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Abstract

An “investment bubble” is a period of “excessive, and predictably unprofitable,
investment”(DeMarzo, Kaniel and Kremer, 2007, p.737). Such bubbles most often
accompany the arrival of some new technology, such as the tech stock boom and bust
of the late 1990’s and early 2000’s. We provide a rational explanation for investment
bubbles based on the dynamics of learning in highly uncertain environments. Objec-
tive information about the earnings potential of a new technology gives rise to a set
of priors, or a belief function. A generalised form of Bayes’Rule is used to update
this set of priors using earnings data from the new economy. In each period, agents
—who are heterogeneous in their tolerance for ambiguity —make optimal occupa-
tional choices, with wages in the new economy set to clear the labour market. A
preponderance of bad news about the new technology may nevertheless give rise to
increasing firm formation around this technology, at least initially. To a frequentist
outside observer, the pattern of adoption appears as an investment bubble.
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1 Introduction

DeMarzo, Kaniel and Kremer (2007) describe a period of “excessive, and predictably un-
profitable, investment” (p.737; emphasis in original) as an “investment bubble”. They
observe that such bubbles are often associated with new technologies, and cite the tech
stock boom of the late 1990’s as an example. They quote as follows from a 2003 report by
the Joint Economic Committee of the United States Congress:

“[B]usiness investment and aggregate after-tax corporate profits diverged
from 1997 to 2000. Entrepreneurs and firm managers succumbed to the same
‘irrationality’ regarding their decisions to invest in capital assets that stock
market participants were suffering regarding their decisions to purchase equi-
ties.”(p.736)

In episodes such as this, the market appears to throw good money after bad. However, it
is less clear that genuine “irrationality”is involved. In this paper we show that investment
bubbles may arise quite naturally in the presence of ambiguity about the prospects of a
new technology.
In our model, market participants must update ambiguous prior beliefs on the basis of

earnings data from a new technology sector. We show that the evolving equilibrium may
follow a boom-bust path, even if the market data convey “bad news”on average. If the
market had held precise prior beliefs, a monotonic decline of the new sector would have
been observed, but ambiguity may support an initial period of significant growth.
Our model is based on that in Rigotti, Ryan and Vaithianathan (2011; henceforth,

RRV). Unlike RRV, which studied the diffusion profile of successful innovations, we focus
here on the adoption of unsuccessful technologies. We also depart from RRV by incorpo-
rating an explicit learning process into the model. Market participants hold ambiguous
prior beliefs, so learning involves a non-standard inference problem. We apply the theory
of belief functions (Dempster, 1967; Shafer, 1976) to solve this inference problem.
In the model, an investment bubble arises within a stable economic environment with

public information. There are no exogenous shocks and no informational asymmetries. Two
effects drive the learning dynamics. First, the content of the earnings data (i.e., “good
news”versus “bad news”) causes agents to adjust their profit expectations in the obvious
direction. This is what we call the news effect. Second, any news, good or bad, reduces the
level of uncertainty around these profit expectations. This ambiguity reduction effect does
not arise in conventional Bayesian inference from a precise prior. The ambiguity-reduction
effect ameliorates the impact of bad news —and amplifies the impact of good news —on
the lower bound on profit expectations. Data which contain predominantly bad news may
therefore improve the lower bound. This is what drives the boom phase of the investment
bubble in the model.
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Note that ours is not a story of excessive exuberance, irrational or otherwise. Entrepre-
neurial innovators, who focus on the upper bound on profit expectations, are increasingly
discouraged by the poor earnings data. It is their conservative suppliers of capital —hu-
man and financial —who are emboldened to increase investment by the improvement in
worst-case scenario outcomes.
The paper proceeds as follows. Section 2 introduces our notion of ambiguity. We also

describe how market participants make statistical inferences when they have ambiguous
priors. In Section 3 we develop a simple economic model with one good and two produc-
tion technologies —an old technology which is well understood and a new technology of
uncertain productivity. Agents, who differ in their tolerance for ambiguity, make rational
occupational choices, with wages and the number (mass) of new technology firms deter-
mined endogenously in competitive equilibrium. Section 4 studies learning dynamics for
this economy. Each period, all agents observe the earnings of the new technology firms
and use this public information to update beliefs about its expected profitability. Using a
simulated numerical example, we demonstrate the possibility of positive diffusion despite
the predominance of bad news. The size of the new technology sector initially rises before
the shake-out begins, even though the new technology is inferior to the old, as a frequen-
tist analysis of the data would lead one to conclude. We offer some concluding remarks in
Section 5.

2 Ambiguity and inference

Consider a finite state (or parameter) space Θ = {θ1, ..., θn}. Dempster (1967) provides a
convenient structure for characterising ambiguous beliefs over Θ. Dempster supposes that
these beliefs are induced by a source (S,Σ, µ,Γ), where (S,Σ, µ) is a measure space and
Γ : S → 2Θ� {∅} is a measurable mapping from S to the non-empty subsets of Θ. This
source provides information about Θ as follows: if s ∈ S is realised, then the true θ value
must lie in the set Γ (s) ⊆ Θ. Knowledge of the measure µ on (S,Σ) therefore provides
probabilistic information about θ via the information mapping Γ. For example, if Γ (s) is
a singleton for every s ∈ S, then the source induces a probability on Θ. Otherwise, the
source may provide only partially specified probabilistic information about θ.
To quantify this information, we associated to each source (S,Σ, µ,Γ) a belief function

v : 2Θ → [0, 1], defined as follows:

v (E) = µ ({s ∈ S | Γ (s) ⊆ E}) .

The quantity v (E) is a lower bound on the probability of E implied by the source. Letting
∆ (Θ) denote the set of all probability measures on Θ,

Π = {π ∈ ∆ (Θ) |π (E) ≥ v (E) for all E ⊆ Θ}
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is the collection of probability measures consistent with the source. Importantly, the set
Π is non-empty (Dempster, 1967). It is clearly also closed and convex. Economists refer
to Π as the core of v.1

Shafer (1976) discusses alternative characterisations of belief functions, and argues for
their usefulness as measures of degrees of belief.
Many situations in which information is ambiguous, or imprecisely specified, may be

represented using Dempster’s construction. A notable example is furnished by Ellsberg’s
(1961) three-colour experiment.

The Ellsberg Experiment. Consider an urn containing 90 balls. The following infor-
mation is given: 30 of the balls are red (r), while each of the other 60 balls is
either black (b) or green (g). A ball has been drawn from the urn at random. Let
θ ∈ Θ = {r, b, g} denote the unknown colour of the ball. The information given
does not allow us to assign precise probabilities to each element of Θ, though we can
certainly assign probability 1

3
to r. The information can, however, be described using

a source defined as follows: S = {s′, s′′} with Σ = 2S, Γ (s′) = {r}, Γ (s′′) = {b, g},
µ (s′) = 1

3
and µ (s′′) = 2

3
. In other words, with probabilty 1

3
the ball is red, and with

probability 2
3
it is either black or green. From this source we obtain the following

belief function:

v (E) =



1 if E = Θ

2
3
if E = {b, g}

1
3
if r ∈ E 6= Θ

0 otherwise

and associated set of probabilities:

Π =

{
π ∈ ∆ (Θ)

∣∣∣∣ π (r) =
1

3

}
(1)

The set Π contains exactly those probabilities on Θ that are consistent with the
information given.

1There is some potential for confusion, however, as Shafer (1976, p.40) uses the term “core”to refer to
a different property of belief functions. We will conform to the economists’usage here. Note that v may
be recovered as the lower envelope of Π:

v (E) = min
π∈Π

π (E) .
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Importantly, this example illustrates that ambiguous beliefs may arise from objective
information. Anyone provided with the information above would arrive at the same set
(1) of compatible probabilities.
In the following section, we consider an economy in which the earnings of firms using a

new technology are described by a discrete random variable whose associated probability
function depends on the unknown value of the parameter θ ∈ Θ = {θ1, ..., θn}. Prior
information about θ can be summarised in the form of a belief function, v.
If v is not a probability, how should market participants update their beliefs on the

basis of earnings data? What is the appropriate rule of inference?
The statistics literature does not offer a consensus view on this question. Several

proposals have been studied. We adopt the method originally proposed by Shafer (1976,
Chapter 11), which generalises Bayesian inference. In particular, it coincides with standard
Bayesian inference when the belief function is a probability (Π is a singleton). The details
of Shafer’s Method (SM) are given in Appendix A.2 We here describe its salient features.
Recall that the belief function v assigns a lower bound to the probability of each E ⊆ Θ.

In other words, prior beliefs determine a probability interval

[v (E) , 1− v (Θ�E)] (2)

for each event E ⊆ Θ. The probability interval for E may be usefully characterised by its
mid-point

1

2
v (E) +

1

2
[1− v (Θ�E)] (3)

and its width
1− v (Θ�E)− v (E) (4)

The process of inference updates the mid-point and the width. We shall refer to the
data’s impact on the mid-point as the news effect and its impact on the width as the
ambiguity-reduction effect.
The interaction of these two effects will be important for our analysis. The data are

said to be “good news” for E if the mid-point (3) increases after updating, and “bad
news”if it decreases. It is also natural to expect that new data will reduce the width (4)
by reducing ambiguity. Such is the case under SM updating for our model. If so, then the
ambiguity-reduction effect ameliorates the effect of good news on v (E) and amplifies its
effect on 1− v (Θ�E), and conversely for bad news. See Figure 1.
Suppose we receive a series of data which convey predominantly bad news for E, in the

sense that the mid-point (3) is lower after updating on the basis of this data. The upper
end-point of the interval (2) will also certainly have fallen. However, the lower end-point
may have risen if the ambiguity-reduction effect is suffi ciently strong.

2We also discuss two alternative methods of inference in Appendix A.
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Figure 1: News and ambiguity-reduction effects on probability intervals

It is this latter possibility which creates the potential for the market to throw good
money after bad. Suppose θ ∈ E implies high earning potential for the new technology
and θ ∈ Θ�E implies low earning potential. Relatively pessimistic agents —those who
pay relatively close attention to the lower end-point of the probability interval (2) —may
therefore become increasingly sanguine about the new technology, at least initially, even
if most of the early news is bad. Depending on the aggregate degree of pessimism in the
population, one might observe an “investment bubble”of the sort described by DeMarzo,
Kaniel and Kremer (2007).
The remainder of the paper illustrates this possibility in a simple model. Note that it is

a possibility, not a certainty. There must be enough agents who are suffi ciently pessimistic
to be positively affected when news is bad on average, yet suffi ciently bold to be willing to
shift to the “new economy”from their safe jobs in the “old economy”.

3 A model of firm formation

Consider an economy with a single consumption good and two technologies for producing
it: an established technology (α) and a new innovation (β). Each technology requires the
input of two (full-time) agents. Both technologies are freely available —one may think
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of them as different techniques for deploying the human capital of the firm, rather than
technologies embodied in capital goods. A firm is formed when two agents join forces to
produce the consumption good using one of the available technologies. In particular, each
agent must commit all of her human capital to a single firm. We will speak of “α firms”
and “β firms”, with the obvious meanings.
Since there is only one consumption good, the partners in any given firm consume

what they produce according to an agreed sharing rule —there is no trade between firms.
Our main interest is in the process of firm formation and the level of adoption of the new
technology β.
We make the following assumption about technologies α and β.

Assumption 1 Each technology produces a stochastic output: either M or m ∈ (0,M).
Technology α produces M with probability

2K −m
M −m

(where K > 0), while technology β produces M with probability θ ∈ Θ = {θ1, θ2}, where

0 < θ1 <
2K −m
M −m < θ2 < 1.

Note that technology α has an expected output of 2K units, or K units per capita.
Technology β either first-order stochastically dominates technology α (if θ = θ2), or is
first-order stochastically dominated by it (if θ = θ1). In particular:

θ2M + (1− θ2)m > 2K > θ1M + (1− θ1)m (5)

We say that the new technology is superior to the old if θ = θ2 and inferior if θ = θ1.3

There is uncertainty about which θ value governs the new technology’s production,
and no agent possesses any private information about θ. All agents share common beliefs
about θ based on public information.

Assumption 2 There is ambiguous public information about the true value of θ, described
by the belief function v on Θ with associated (non-singleton) core Π.

Firms use Pareto effi cient sharing rules to share the stochastic output between the
partners. All agents are risk neutral in the model —see (6) below —so any sharing rule is
Pareto effi cient for a firm using technology α. It is therefore natural to make the following:

3These stochastic dominance relationships are significant. Two well-known explanations of investment
bubbles rely on risk aversion to conclude that the investment is “irrational”(DeMarzo, Kaniel and Kremer,
2007; Pástor and Veronesi, 2006). In our model, investing in an inferior technology is irrational irrespective
of the investor’s risk attitude.
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Assumption 3 Partners in firms using technology α agree to share output equally.

For firms using technology β, it is not straightforward to determine the Pareto effi cient
sharing rules.
Suppose a partner in such a firm receives share sM ∈ [0,M ] when realised output is

M and sm ∈ [0,m] when realised output is m. We assume that she uses the following
Arrow-Hurwicz criterion (Arrow and Hurwicz, 1972; Luce and Raiffa, 1957, p.282)4 to
evaluate the contract s = (sM , sm) ∈ [0,M ]× [0,m]:

U (s;λ) = λ

[
max
π∈Π

∑
θ∈Θ

π (θ) f (θ; s)

]
+ (1− λ)

[
min
π∈Π

∑
θ∈Θ

π (θ) f (θ; s)

]
(6)

where
f (θ; s) = θsM + (1− θ) sm

is the expected payment in state θ and λ ∈ [0, 1] the agent’s ambiguity tolerance parameter.
The value of λ is the only dimension along which agents will be differentiated in the model.
We shall impose the restriction λ ≤ 1

2
for every agent —see Assumption 4 below —in

order to make use of the following result (which may be of independent interest):5

Theorem 3.1 Consider two agents with respective ambiguity tolerance parameters λ1 and
λ2 satisfying λ1 < λ2 ≤ 1

2
. Suppose they are partners in a β firm. Let skM ∈ [0,M ] and

skm ∈ [0,m] be the shares of M and m (respectively) promised to the partner with parameter
λk (k ∈ {1, 2}). (Hence s1

M + s2
M = M and s1

m + s2
m = m.) This sharing rule is Pareto

effi cient iff s1
m = min {s1

M ,m}.

In a Pareto effi cient sharing rule, the less ambiguity-tolerant partner is offered a fixed
“wage”(w = s1

M), which is paid to the extent resources allow (i.e., s
1
m = min {w,m}). The

partner with the higher tolerance for ambiguity becomes the residual output claimant.
Such firms have a familiar “owner-worker”structure. We assume that all β firms pay the
same wage w.6 This w will be chosen to equilibrate the labour market for the β-technology
sector.

Assumption 4 There is a continuum of agents with unit mass. Ambiguity tolerance is
distributed in the population according to the differentiable distribution function H. We
assume that H is satisfies H (0) = 0 and H

(
1
2

)
= 1, and H ′ (x) > 0 whenever H (x) ∈

(0, 1).

4Jaffray (1989, 1991, 1994), Hendon et al. (1994) and Jaffray and Wakker (1994) provide axiomatic
foundations for this model of decision-making.

5All proofs are in Appendix B.
6If wages differed across such firms, the owner of a high-wage β firm and the worker from a low-wage

β firm could both be better off by forming a new β firm paying an intermediate wage.
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Given w ≤M , each agent chooses an optimal occupation from the setO = {A,BL, BO},
where A denotes an occupation in an α firm, BL denotes wage-labour in a β firm and BO

denotes owning a β firm. Occupation A yields payoff K (Assumption 3); occupation BL

yields payoff (6) with sM = w and sm = min {w,m}; and occupation BO yields payoff (6)
with sM = M − w and sm = max {m− w, 0}.
Let us define BR (w;λ) ⊆ O to be the set of utility-maximising occupations for type λ

given w.

Lemma 3.1 If w < 1
2

(M +m), there exist unique values

λ (w) ∈
[
0,

1

2

]
and

λ (w) ∈
[
λ (w) ,

1

2

]
such that

BR (w;λ) =


{BO} if λ > λ (w)

{BL} if λ ∈
(
λ (w) , λ (w)

)
and (w > m or w 6= K)

{A,BL} if λ ∈
(
λ (w) , λ (w)

)
and w = K ≤ m

{A} if λ < λ (w)

If w ≥ 1
2

(M +m) the worker in a β firm receives a strictly higher share of any realised
output than the owner. No-one would choose to own a β firm at such a wage, so such firms
could not exist in equilibrium (Definition 1). When w < 1

2
(M +m) Lemma 3.1 implies a

natural ordering of occupations by ambiguity: the most ambiguity-tolerant agents choose
to own β firms, the least ambiguity tolerant are partners in α firms, and a middle group
supply labour to β firms.7

Definition 1 We say that w is an equilibrium wage if there exist λ∗, λ∗∗ ∈
[
0, 1

2

]
with

λ∗ ≤ λ∗∗ such that

(i) A ∈ BR (w, λ) for all λ < λ∗

(ii) BL ∈ BR (w, λ) for all λ ∈ (λ∗, λ∗∗)

(iii) BO ∈ BR (w, λ) for all λ > λ∗∗

(iv) H (λ∗∗)−H (λ∗) = 1−H (λ∗∗)

7Note, however, that Lemma 3.1 does not guarantee that each of these sets is non-empty.
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At an equilibrium wage it is possible to allocate agents to utility-maximising occupa-
tions in such a way that the β-sector labour market clears —condition (iv).8 The quantity
1−H (λ∗∗) is the mass of β firms which form in the equilibrium.

Theorem 3.2 An equilibrium exists and the mass of β firms is the same at any equilib-
rium.

4 Learning

The model of the preceding section provides the simplest possible environment for illus-
trating an investment bubble.
If β firms are formed in equilibrium, then realised output from these firms generates

(public) information about θ. Agents use this information to update their common belief
function (according to the SM rule). Updating disturbs the existing equilibrium —the util-
ities associated with occupations in the β-technology sector change —so a new equilibrium
will be established. The learning process therefore determines a stochastic path for the
mass of β firms.9 We will show that the average path may rise and then fall when β is
an inferior technology (θ = θ1). Of course, data from the β-technology sector will convey
bad news (on average) when β is inferior to α, so this path resembles the boom and bust
of an investment bubble.
Let us therefore introduce a time index t ∈ {1, 2, ...}. Technology β first becomes

available at the start of period t = 1. In period t, agents base their decisions on a common
belief function v = vt with associated (non-singleton) core Πt. The belief function v1

is exogenously given, and describes the public information about β available prior to its
adoption. All β firms formed in period t receive the same output realisation yt ∈ {M,m}.10
The belief function vt+1 is formed by updating vt based on the observation yt using the
SM rule.

8If w ≥ 1
2 (M +m) we have BR (w, λ) ⊆ {A,BL} for every λ (recall the discussion following Lemma

3.1) so equilibrium requires A ∈ BR (w, λ) for all λ (i.e., λ∗ = λ∗∗ = 1
2 ).

9We assume that technology choices are freely reversible and that the consumption good perishes after
one period, so the optimal choice of occupation depends only on current period returns. Hence, the
learning process determines a sequence of one-shot equilibria of the sort defined in the previous section.
Of course, if no β firms form in period t, then agents learn nothing further about the β technology and
the equilibrium does not change thereafter. This may create incentives for agents to experiment with
the β technology even if it reduces current utility, in order to produce information that will alter the
future values of equilibrium variables. We shall sidestep this potential source of temporal dependence in
decision-making by supposing that a measure zero set of “non-rational” agents always form β firms, or
that a public research institute produces new data on technology β in each period (as in Jensen, 1982).
10If each firm received an independent draw from the Bernoulli random variable then a continuum of

observations would be generated each period and learning would cease after one round of updating.
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The system therefore evolves according to the following stochastic process. Nature
draws a sequence {y1, y2, ...} of independent observations on the Bernoulli random variable
that takes value M with probability θ and m with probability 1 − θ. From this sequence
(and the exogenously given v1) we determine a sequence {v1, v2, ...} of belief functions via
SM inference. In period t, the equilibrium wage wt and associated mass of β firms, denoted
by δt, is determined using vt. Our interest focusses on the shape of the average {δ1, δ2, ...}
path when θ = θ1 (i.e., when β is an inferior technology).
Figure 2 illustrates two such paths, for two particular cases of our model. The horizontal

axis measures t and the vertical measures δt. For each path, we have set M = 70, m = 10,
θ1 = 0.45, θ2 = 0.5, K = 19.15 and v1 ({θ1}) = v1 ({θ2}) = 0.1.11 The two paths are
generated using two different H distributions, one left-skewed and one right-skewed.12

A left-skewed distribution represents a more ambiguity-tolerant population than a right-
skewed distribution. For each case, we plot the average {δ1, δ2, ..., δ50} path over 1000
simulations.13 Both cases exhibit an initial upswing in this averaged path. The upswing
is most pronounced for the left-skewed H distribution.
It is important to recall that Figure 2 reports averaged diffusion paths over 1000 trials,

so these shapes are not the artefacts of a particular sample path for yt. On average, the
data favour θ1. If v1 was a probability, so all agents are conventional Bayesians, the average
posterior probability on θ1 would increase monotonically, giving a monotonically declining
path for (average) δt. The ambiguity-reduction effect is clearly at work during the upswing
in Figure 2.
What is going on in these examples? Let us define

p
t

= min
π∈Πt

∑
θ∈Θ

π (θ) θ = vt ({θ2}) θ2 + [1− vt ({θ2})] θ1

pt = max
π∈Πt

∑
θ∈Θ

π (θ) θ = vt ({θ1}) θ1 + [1− vt ({θ1})] θ2

Then
[
p
t
, pt

]
is the probability interval for yt = M based on the information available at

the start of period t. Initially, we have
[
p

1
, p1

]
= [0.455, 0.495] with mid-point

1

2

(
p

1
+ p1

)
= 0.475.

On average, the news is “bad”for this event, since θ1 = 0.45 is the true parameter value:
the mid-point declines (on average). However, the lower bound on this interval rises initially

11Note that v1 is a belief function (a source is easily constructed) and Assumption 1 is satisfied.
12For the right-skewed distribution, we used the Beta(25, 15), and for the left-skewed distribution the

Beta(15, 25). We re-scaled each distribution so it is supported on
[
0, 1

2

]
.

13We have truncated the simulation at 50 periods to focus on the paradoxical upswing, but the δt paths
do eventually converge to zero for both distributions.
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Figure 2: Diffusion profile for θ = θ1 with right vs left skewed λ distribution

due to the ambiguity-reduction effect. This rising lower bound drives the upswing in the
adoption of the new technology. Figure 3 illustrates. It traces the mid-point and lower
bound for the average probability interval

[
p
t
, pt

]
, using v1, θ1 and θ2 as for Figure 2.

The driving force behind the upswing is not the increased exuberance of β firm own-
ers. A maximally ambiguity-tolerant decision-maker, one with λ = 1

2
, evaluates β sector

occupations using the mid-point of the probability interval
[
p
t
, pt

]
: recall (6) and note

that ∑
θ∈Θ

π (θ) f (θ; s) = sm + (sM − sm)
∑
θ∈Θ

π (θ) θ.

This mid-point is falling (on average), so types with λ near 1
2
are increasingly pessimistic

about the prospects of the β technology. On the other hand, the most ambiguity-intolerant
decision-maker, one with λ = 0, evaluates β sector occupations using the lower bound of
the probability interval

[
p
t
, pt

]
, which is initially rising (on average). In general, the lower

the value of λ (i.e., the less ambiguity tolerant the decision-maker), the more attention is
paid to this lower bound. Recalling Lemma 3.1, it is clear that the main driver of the
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Figure 3: Evolution of lower bound p
t
(dashed) and mid-point 1

2

(
p
t
+ pt

)
(solid)

upswing is an increase in the supply of labour to β firms from agents with relatively low λ
values. This pushes down equilibrium wages and encourages β firm formation, despite the
increasing pessimism of many β firm owners.

5 Concluding remarks

In ambiguous environments, there is a sense in which “any news is good news”for pessimists
and “any news is bad news” for optimists. All news reduces ambiguity, so optimistic
expectations about best-case-scenarios are dented, while pessimists become less gloomy
about worst-case-scenarios. The latter effect drives the upswing in investment during the
initial phase of the investment bubble. Since equilibrium forces select (relative) optimists
into entrepreneurship, it is the pessimism of their suppliers of labour which is instrumental
in explaining the boom.
One can easily imagine similar dynamics motivated by the relative pessimism of fi-

nanciers to new technology entrepreneurs. Our wage contracts are analogous to standard
debt contracts, so we would expect the suppliers of finance to be more pessimistic —in equi-
librium —than the entrepreneurial borrowers.14 In particular, risks are technology-specific

14Several papers study the financing of “optimistic” entrepreneurs by “realistic” lenders, though the
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rather than firm-specific, so lenders cannot diversify against the uncertain performance of
the new technology.
Our bubble features the “predictably unprofitable”investment of the DeMarzo, Kaniel

and Kremer (2007) definition. An outside observer applying a frequentist lens to the data
would (on average) conclude that the new technology is less profitable than —indeed, first-
order stochastically dominated by —the old technology, and they would do so well before
the path of investment turns downward. Likewise, a Bayesian observer with a probabilistic
prior, whatever it might be, would (on average) have a monotonically declining expectation
of the returns to the new technology. These expectations are eventually confirmed, lending
an appearance of irrationality to the original run-up in investment by the market.

Appendix A
Inference with Multiple Priors15

The SM method constructs a likelihood-based belief function to encapsulate the new
information from the sample data, then combines this with the prior belief function using
Dempster’s rule of combination. We shall discuss the italicised terms in reverse order.
Dempster’s rule is a natural method for combining information about a common state

space Θ from two independent sources, say (S,Σ, µ,Γ) and (S ′,Σ′, µ′,Γ′). One first con-
structs a combined source

(S × S ′,Σ× Σ′, µ∗,Γ∗) ,

where Γ∗ (s, s′) = Γ (s) ∩ Γ′ (s′) contains the Θ-states consistent with both s ∈ S and
s′ ∈ S ′, and µ∗ is the product measure µ× µ′ conditioned on

E∗ = {(s, s′) ∈ S × S ′ | Γ∗ (s, s′) 6= ∅} .

In other words, E∗ is the event that the two sources deliver non-contradictory information.
Next, one constructs the belief function generated by (S × S ′,Σ× Σ′, µ∗,Γ∗). If v is the
belief function induced by (S,Σ, µ,Γ) and v′ the belief function induced by (S ′,Σ′, µ′,Γ′),
then the belief function associated with (S × S ′,Σ× Σ′, µ∗,Γ∗) is denoted v⊕v′ and satisfies

(v ⊕ v′) (E) =
(µ× µ′) ({(s, s′) ∈ S × S ′ | Γ∗ (s) ⊆ E})

(µ× µ′) (E∗)

= µ∗ ({(s, s′) ∈ S × S ′ | Γ∗ (s) ⊆ E})

definitions of optimism in these papers typically differ from ours: see, for example, De Meza and Southey
(1996), Manove and Padilla (1999) and Dushnitsky (2010).
15The interested reader may consult Wasserman (1990) for more details.
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for each E ⊆ Θ. The operator ⊕ is called the orthogonal sum.
The likelihood-based belief function is the belief function induced by the source(

[0, 1] , B ([0, 1]) , Leb, Γl
)
,

where B ([0, 1]) are the Borel subsets of [0, 1], Leb is Lebesgue measure, and

Γl (s) =

{
θ ∈ Θ

∣∣∣∣ l (θ)

maxθ′∈Θ l (θ
′)
≥ s

}
.

Thus, Γl (s) is a likelihood upper-contour set. The belief function induced by this source
has the following specification:

vl (E) = 1 − maxθ∈Θ�E l (θ)

maxθ′∈Θ l (θ
′)

(7)

To help interpret the likelihood-based belief function (7), observe that vl (E) is the con-
tribution of E to achieving the maximum likelihood: 100

[
1− vl (E)

]
% of the maximum

likelihood can be achieved within Θ�E. Wasserman (1990) discusses axiomatic founda-
tions for (7).
In our model, we use the SM rule to update beliefs about the “success”probability of

a Bernoulli random variable, so let’s consider that inference problem.
Let Y be a Bernoulli random variable with success probability θ ∈ Θ = {θ1, θ2}, where

θ1 < θ2. The prior is described by the belief function v1. We observe a sequence {yt}mt=1 of
random draws from Y , where yt ∈ {M,m} with yt = M indicating a “success”in period t.
After each draw we apply the SM procedure to update the belief function. Let vt denote
the belief function prevailing at the start of period t. To simplify notation, we write vt,i
for vt ({θi}).
By direct calculation, the SM rule gives the following update formulae:

vt+1 ({θ1} | yt = M) =
vt,1θ1

vt,1θ1 + (1− vt,1) θ2

≤ vt,1 (8)

vt+1 ({θ2} | yt = M) =
vt,2θ2 + (1− vt,1 − vt,2) (θ2 − θ1)

vt,1θ1 + (1− vt,1) θ2

≥ vt,2 (9)

vt+1 ({θ1} | yt = m) =
vt,1 (1− θ1) + (1− vt,1 − vt,2) (θ2 − θ1)

vt,2 (1− θ2) + (1− vt,2) (1− θ1)
≥ vt,1 (10)

vt+1 ({θ2} | yt = m) =
vt,2 (1− θ2)

vt,2 (1− θ2) + (1− vt,2) (1− θ1)
≤ vt,2. (11)

These coincide with the standard Bayesian updating formulae if

vt,1 + vt,2 = 1

14



(i.e., if there is no ambiguity at the start of period t).
Observe also that

vt+1 ({θ1} | yt) + vt+1 ({θ2} | yt) ≥ vt,1 + vt,2

for any yt ∈ {M,m}. The probability interval for the event {θ2} is [v2,t, 1− v1,t] in period
t, so updating reduces the width of this interval for any yt. (The same is true of the interval
for {θ1}.) This is the ambiguity reduction effect.
As noted in Section 2, the SM approach is not the only method of inference available

when the prior is described through a belief function. Let us briefly mention two others.

Robust Bayesian Approach. Robust Bayesian (RB) inference applies Bayes’Rule to
every prior in Πt to construct a set of posteriors. (This procedure can be applied
whether or not Πt is the core of a belief function.) Importantly, the SM posterior
probability interval for any event is always contained in the RB posterior interval
(Wasserman, 1990, Theorem 7). Roughly speaking, SM inference resolves ambiguity
more rapidly than RB inference. Since the ambiguity-reduction effect is critical to an
investment bubble, SM inference is more conducive to a bubble than RB inference.
In fact, we have not been able to obtain an investment bubble in any simulation in
which agents perform inference according to the RB procedure.

Indeed, many scholars —including Shafer (1982, p.327) —have noted with concern the
radical lack of ambiguity-resolution when applying the RB method. It is well-known,
for example, that RB inference may exhibit dilation — the paradoxical possibility
that the posterior interval for an event, conditional on any cell in a partition of
the parameter space, strictly contains the prior interval (Seidenfeld and Wasserman,
1993).16

Shafer’s Alternative Method. Shafer himself had misgivings about SM inference and
subsequently developed some alternatives in Shafer (1982).17 He there proposes

16A simple example is the following (Seidenfeld and Wasserman, 1993, p.1140). Two coins are to be
flipped and the outcomes recorded. Each coin is known to be fair but there is complete uncertainty about
the independence or otherwise of the outcomes. Thus, Θ = {HH,HT, TH, TT} and the prior set is

Π =

{
π ∈ ∆ (Θ)

∣∣∣∣ π ({HH,HT}) = π ({HH,TH}) =
1

2
and 0 ≤ π ({HH}) ≤ 1

2

}
The prior interval for the event of tossing a Head on the first coin is

{
1
2

}
, but conditional on the outcome

of the second coin toss —whatever it might be —the posterior interval is [0, 1].
17His misgivings arose from the fact that the SM approach may give different posterior belief functions

depending on whether updating is done one data point at a time, or the data sequence summarised in a
single likelihood-based belief function. This problem was observed in early reviews of Shafer (1976) —see
Shafer (1982, p.338).
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that the method of inference should be specific to the context that gives rise to the
model —he rejects the notion of a “one size fits all”approach to inference. Shafer
(1982) analyses three specific contexts and proposes a different mode of inference for
each. None coincides with SM. The context of our model is best captured by what
Shafer calls “Models Composed of Independent Frequency Distributions” (Shafer,
1982, Section 3.1).18 If we were to use the method proposed by Shafer (1982) for
this context, instead of SM, our conclusions would be strengthened, since Shafer’s
alternative method resolves ambiguity even more rapidly than the SM approach.
Details are available from the authors on request.

Appendix B
Proofs

It will be convenient to define the following upper and lower bounds on the probability
of realising output M from technology β:

p = min
π∈Π

∑
θ∈Θ

π (θ) θ

p = max
π∈Π

∑
θ∈Θ

π (θ) θ

Note that 0 < p < p < 1 by Assumptions 1 and 2. We also define

pλ = λp+ (1− λ) p

which is strictly increasing in λ and satisfies pλ ∈ (0, 1) for all λ ∈
[
0, 1

2

]
.

Proof of Theorem 3.1. It is easily verified that

U (s;λ) = min
p∈[pλ, p1−λ]

psM + (1− p) sm (12)

when λ ≤ 1
2
.

We first prove necessity. We shall suppose that s1
m 6= min {s1

M , m} and prove that a
Pareto improvement is feasible.

18This method (as Shafer observes) was originally proposed by Smets (1978).
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Let u1 = U (s1;λ1) be the certainty equivalent of s1 for type λ1. In particular,

u1 ∈
[
min

{
s1
m, s

1
M

}
, max

{
s1
m, s

1
M

}]
.

Since s1
m 6= min {s1

M , m} and s1
m ≤ m we must have

s1
m < m ≤ s1

M ≤M

when min {s1
M , m} = m or

min
{
s1
m, s

1
M

}
< max

{
s1
m, s

1
M

}
≤ m < M

when min {s1
M , m} = s1

M . It follows that

α (u1, u1) + (1− α)
(
s1
M , s

1
m

)
≤ (M, m) (13)

for α > 0 suffi ciently close to zero. It is therefore possible to move the λ1 type’s contract
marginally in the direction of its certainty equivalent without violating feasibility. We shall
show that this yields a Pareto improvement.
Choose α ∈ (0, 1) small enough to satisfy (13) and define the new sharing rule

ŝ1 = α (u1, u1) + (1− α) s1

ŝ2 = (M, m) − ŝ1.

Then

U
(
ŝ1;λ1

)
= min

p∈[pλ1 , p1−λ1 ]
pŝ1

M + (1− p) ŝ1
m

= αu1 + (1− α)

[
min

p∈[pλ1 , p1−λ1 ]
ps1

M + (1− p) s1
m

]

= u1

Since pλ is strictly increasing in λ, we have pλ2 > pλ1 and p1−λ2 < p1−λ1 . Hence, using
Aubin (1998, Proposition 4.4) we deduce:

lim
α↓0

U (ŝ2;λ2) − U (s2;λ2)

α
= min

p∈[pλ2 , p1−λ2 ]
pŝ1

M + (1− p) ŝ1
m − u1

> min
p∈[pλ1 , p1−λ1 ]

pŝ1
M + (1− p) ŝ1

m − u1

= 0
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Therefore, if α ∈ (0, 1) is small enough, we have a Pareto improvement. This proves the
necessity part of the Theorem.
To prove suffi ciency, we use an Edgeworth Box to depict all feasible sharing rules —see

Figure 4. The contours of (12) are piecewise linear, with a kink at the decision-maker’s
certainty line. To establish the slopes of the various pieces, let qλ = p1−λ and note that

qλ1

1− qλ1 >
qλ2

1− qλ2 >
pλ2

1− pλ2 >
pλ1

1− pλ1 .

Figure 4 depicts one sharing rule with wage w = s1
M = s1

m and another with wage w
′ =

s1
M > m = s1

m. It is easy to see that each scenario is Pareto effi cient. �

Figure 4: Pareto effi ciency in an Edgeworth Box

Proof of Lemma 3.1. Consider a β firm paying wage w < 1
2

(M +m). Let sO,w =
(M − w, max {m− w, 0}) be the owner’s share and sL,w = (w, min {w,m}) be the worker’s
share. Defining s∗ = (M,m) we observe that

f (θ; s∗) = f
(
θ; sO,w

)
+ f

(
θ; sL,w

)
18



for each θ ∈ Θ. Since f
(
·; sO,w

)
: Θ→ R and f

(
·; sL,w

)
: Θ→ R are comonotone, we have

(Schmeidler, 1986):
U (s∗;λ) = U

(
sO,w;λ

)
+ U

(
sL,w;λ

)
. (14)

The right-hand side of (14) is the sum, for an agent of type λ, of the utility from owning
a β firm and the utility from working in one. These utilities may be expressed as follows:

U
(
sO,w;λ

)
=

{
pλM +

(
1− pλ

)
m− w if w ≤ m

pλ (M − w) if w > m
(15)

and

U
(
sL,w;λ

)
=

{
w if w ≤ m

pλw +
(
1− pλ

)
m if w > m

(16)

For given w, both functions are linear in λ. The former is also strictly increasing in λ,
while the latter is non-decreasing. From equation (14), the average of these two functions
is equal to 1

2
U (s∗;λ), so U (s∗;λ) is strictly increasing in λ.

We next observe that the difference

U
(
sO,w;λ

)
− U

(
sL,w;λ

)
=


m − 2w + pλ (M −m) if w ≤ m

−m + pλ [(M +m)− 2w] if w > m
(17)

is strictly increasing in λ, since pλ is strictly increasing in λ and

w <
1

2
(M +m) .

Hence, for each w < 1
2

(M +m), there exists a unique real number a (w) (not necessarily
in
[
0, 1

2

]
) such that

U
(
sO,w; a (w)

)
= U

(
sL,w; a (w)

)
=

1

2
U (s∗; a (w)) .

We have
U
(
sO,w; z

)
> U

(
sL,w; z

)
for any z > a (w) and

U
(
sO,w; z

)
< U

(
sL,w; z

)
for any z < a (w).
Finally, consider the piecewise linear function

Gw (z) = max
{
U
(
sO,w; z

)
, U
(
sL,w; z

)}
.

This gives the maximum return available to a type z agent from β occupations, given w.
It is strictly increasing above a (w) and weakly increasing below it. Figure 5 illustrates.
To complete the proof of the Lemma, we compare K with Gw (z). There are two cases

to consider.
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Figure 5: The piecewise linear function Gw (z)

Case I: K ≤ w ≤ m. In this case, Gw (z) = w ≥ K when z ≤ a (w), and Gw (z) > w ≥ K
otherwise: wage w is not exposed to default, and no type λ strictly prefers to be
employed in the α sector. See Figure 6.

Therefore, λ (w) = 0 and λ (w) = max
{

0, min
{
a (w) , 1

2

}}
. If w = K, then all types

with λ < λ (w) are indifferent between working in a β firm and an occupation in α;
otherwise, such types have a strict preference for working in a β firm.

Case II: w > m or w < K. In this case, Gw (z) is either strictly increasing or else w < K.
It follows that there exists a unique b (w) such that K = Gw (b (w)). Moreover,
Gw (z) > K for z > b (w) and Gw (z) < K for z < b (w). Figure 7 illustrates a
scenario with w > m.

If b (w) > a (w), then λ (w) = λ (w) = max
{

0, min
{
b (w) , 1

2

}}
, while if b (w) ≤

a (w) we have λ (w) = max
{

0, min
{
a (w) , 1

2

}}
and λ (w) = min

{
max {0, b (w)} , 1

2

}
.

This completes the proof of Lemma 3.1. �
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Figure 6: Case I with w > K

Proof of Theorem 3.2. The essence of the result is easily grasped using Lemma 3.1.
From (15) and (16) we observe that

w > w′ ⇒ U
(
sO,w; z

)
> U

(
sO,w

′
; z
)
for all z (18)

and
w > w′ ⇒ a (w) > a (w′) (19)

It follows that an increase in w will strictly and continuously reduce net excess demand
in the β labour market when types choose utility-maximising occupations.19 Since excess
demand is clearly positive when w = 0 and negative as w → 1

2
(M +m), it is easy to

obtain a triple (w, λ∗, λ∗∗) that satifies (i)—(iv). The uniqueness properties follow directly
from (18) and (19). Figure 8 illustrates an equilibrium.
A more formal argument runs as follows. We will construct an excess labour demand

correspondence Λ :
[
0, 1

2
(M +m)

]
� [−1, 1] for the β labour market, and confirm that

0 ∈ Λ (w∗) for some

w∗ ∈
[
0,

1

2
(M +m)

]
.

19Excess labour demand can be multi-valued, so these statements are somewhat loose, but can be made
precise without altering their spirit.
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Figure 7: Case II with w > m

Define Λ as follows:

Λ (w) =


{

1− 2H
(
λ (w)

)
+H (λ (w))

}
if U

(
sO,w; λ (w)

)
> K{

1− 2H
(
λ (w)

)
+H (λ)

∣∣λ ∈ [λ (w) , λ (w)
]}

otherwise

Standard arguments confirm that Λ has closed graph, and that

Λ−1 (z) =

{
w ∈

[
0,

1

2
(M +m)

] ∣∣∣∣ z ∈ Λ (w)

}
is convex. Applying von Neumann’s Intersection Lemma (Border, 1985, p.75) to the graph
of Λ and the set [

0,
1

2
(M +m)

]
× {0} ,

it follows that there exists a w∗ ∈
[
0, 1

2
(M +m)

]
such that 0 ∈ Λ (w∗).

Using the monotonicity ofH, we deduce that there exists a unique λ∗ ∈
[
λ (w∗) , λ (w∗)

]
such that A ∈ BR (w, λ) for all λ < λ∗, BL ∈ BR (w, λ) for all λ ∈

(
λ∗, λ (w∗)

)
and

BO ∈ BR (w, λ) for all λ > λ (w∗).
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Figure 8: Equilibrium

Finally, let
(
w∗, λ∗, λ∗∗ = λ (w∗)

)
describe an equilibrium as above, and assume it is

not the case that λ∗∗ = λ∗ = 1
2
(i.e., assume that a non-zero density of β firms operate

in equilibrium). It suffi ces to show that there is no other w satisfying 0 ∈ Γ (w). Since β
firms operate in the equilibrium described by (w∗, λ∗, λ∗∗), we have λ∗ < λ∗∗ < 1

2
. But the

utility difference (17) is strictly decreasing in w and strictly increasing in λ, so any change
to the wage rate must upset labour market equilibrium in the β sector. �
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