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Abstract

The Condorcet Jury Theorem formalises the "wisdom of crowds": binary de-
cisions made by majority vote are asymptotically correct as the number of voters
tends to infinity. This classical result assumes like-minded, expected utility max-
imising voters who all share a common prior belief about the right decision. Ellis
(2016) shows that when voters have ambiguous prior beliefs —a (closed, convex) set
of priors — and follow maxmin expected utility (MEU), such wisdom requires that
voters’beliefs satisfy a "disjoint posteriors" condition: different private signals lead
to posterior sets with disjoint interiors. Both the original theorem and Ellis’s gener-
alisation assume symmetric penalties for wrong decisions. If, as in the jury context,
errors attract asymmetric penalities, then it is natural to consider voting rules that
raise the hurdle for the decision carrying the heavier penalty for error (such as con-
viction in jury trials). In a classical model, Feddersen and Pesendorfer (1998) have
shown that, paradoxically, raising this hurdle may actually increase the likelihood of
the more serious error. In particular, crowds are not wise under the unanimity rule:
the probability of the more serious error does not vanish as the crowd size tends to
infinity. We show that this "Jury Paradox" persists in the presence of ambiguity,
whether or not juror beliefs satisfy Ellis’s "disjoint posteriors" condition. We also
characterise the strictly mixed equilibria of this model and study their properties.
Such equilibria cannot exist in the absence of ambiguity but may exist for arbitrarily
large jury size when ambiguity is present. In addition to "uninformative" strictly
mixed equilibria, analogous to those exhibited by Ellis (2016), there may also exist
strictly mixed equilibria which are "informative" about voter signals.

∗My thanks to Andrew Ellis, Simona Fabrizi, Steffen Lippert, Aniol Llorente-Saguer and Addison Pan
for helpful comments on previous drafts. Financial support from the Royal Society of New Zealand through
Marsden Fund grant UOA1617 is gratefully acknowledged.



1 Introduction

McLennan (1998) distinguishes two types of Condorcet Jury Theorem (CJT). In McLen-
nan’s typology, a CJT of the Second Type asserts that, under certain conditions, majority
voting by privately but imperfectly informed jurors produces a correct decision with prob-
ability approaching unity as the jury size increases. Such theorems provide one possible
formalisation of the “wisdom of crowds”.
Condorcet assumed “sincere”voting —each juror votes as if deciding the outcome uni-

laterally —but a CJT of the Second Type also obtains when jurors vote strategically, with
attention confined to symmetric Bayesian Nash equilibrium (henceforth, “equilibrium”)
outcomes: see Austen-Smith and Banks (1996) and McLennan (1998).1 More recently,
Ellis (2016) proved a version of Condorcet’s result when jurors have ambiguous prior be-
liefs about the defendant’s guilt, but are not too imperfectly informed. For reasons to be
explained shortly, this generalisation is non-trivial.
In the canonical jury model, jurors share a common prior probability on the defendant’s

innocence. They cast their votes without consultation,2 after observing private signals
drawn independently from a known state-conditional distribution, with the state being
“guilty”or “innocent”. Jurors also share the common objective of maximising the expected
probability of a correct decision (i.e., convict if guilty and acquit if innocent). In Ellis’s
model, the common prior is replaced by a common set of priors; there is a common interval
of probabilities on the innocent state. The canonical model is obtained when this interval
is a singleton. After observing their private signals, jurors update each prior in the set
and vote so as to maximise the minimum (over posteriors) of the expected probability of
a correct decision.
Relative to the standard model, the introduction of ambiguity alters the formal analysis

in two fundamental respects: first, the voting decision of an individual juror can no longer
be determined by conditioning on her vote being pivotal; second, a voter’s best response
may necessitate randomisation. These features substantially complicate the analysis and
Ellis does not give a complete characterisation of the equilibria of his model. However, he
does prove some interesting general properties of these equilibria.
When the posterior probability interval for innocence contains a neighbourhood of 1

2

following any signal —that is, when jurors “lack confidence” in their information (Ellis,
2016, Definition 4) —there exists an equilibrium in which each juror casts either vote with
equal probability (Ellis, 2016, Proposition 1). Voting is completely uninformative about
the jurors’signals. For jurors who lack confidence, such voting is both sincere and a strict

1McLennan (1998) shows that ex ante optimal equilibria may be non-symmetric, but most of the
subsequent literature focusses on the symmetric case.

2For this reason, the jury analogy is somewhat misleading. It does, however, have the advantage of
being memorable; it also nicely motivates the asymmetric loss functions that underpin the “Jury Paradox”
to be discussed shortly.
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best response. Ellis (2016, Theorem 1) further shows that if jurors lack confidence, then
in any equilibrium jurors vote for the incorrect decision at least as often as for the correct
one, conditional on either state. These results apply to juries of any size: ambiguity and
lack of confidence completely undermine the “wisdom”of the crowd.
Conversely, provided the posterior intervals for different signals have disjoint interiors,

then signals can be unambiguously ordered by the implied likelihood of innocence and
a Condorcet-like Jury Theorem holds: as the number of jurors approaches infinity, there
exists a sequence of equilibria along which the probability of a correct decision converges
to unity (Ellis, 2016, Theorem 2). Note the two italicised caveats.
The results of Condorcet and Ellis assume that jurors apply equal utility penalties to

each type of error: convicting the innocent and acquitting the guilty. However, Blackstone’s
maxim exhorts us to guard against the former error more strenuously than we guard against
the latter, and therefore to apply a higher utility penalty to conviction of the innocent
than to acquittal of the guilty. If we follow Blackstone’s maxim then it also is natural
to consider raising the voting hurdle for conviction; to trade off some decision accuracy
for a reduced likelihood of the more grievous error. Surprisingly, however, Feddersen and
Pesendorfer (1998) show that such a trade-offmay be illusory. Raising the conviction hurdle
may sometimes increase the likelihood of convicting an innocent defendant; even more
paradoxically, the probability of convicting the innocent always remains asymptotically
bounded away from zero under the unanimity rule.3 We call this latter result the Jury
Paradox. It stands in stark contrast to Condorcet’s theorem.
In this paper we re-visit the Jury Paradox in the presence of ambiguity. We analyse

the equilibria of Ellis’s model when conviction requires unanimity rather than a simple
majority of guilty votes. To bring Ellis’s model in line with the framework of Feddersen
and Pesendorfer, we make two other adjustments. First, we generalise Ellis’s juror utility
function so that convicting the innocent may attract a higher utility penalty than acquitting
the guilty. Second, we specialise Ellis’s information structure by assuming only two possible
signal realisations, with state-independent signal distributions.
Feddersen and Pesendorfer’s (1998) model is a special case of ours in which prior ambi-

guity vanishes (the prior interval is a singleton). We prove that the Jury Paradox persists
in the more general model: the equilibrium probability of convicting an innocent defendant
is strictly bounded away from zero independently of the jury size: see Theorem 5.1 below.
This is the main result of the paper. Our analogue of Feddersen and Pesendorfer’s paradox
does not require either of the caveats in Ellis’s version of Condorcet’s theorem.
Along the way to proving our main result, we also characterise the strictly mixed equi-

libria of our model —the equilibria in which jurors randomise following either signal. Such
equilibria are of particular interest since they cannot exist in the absence of ambiguity. In

3Provided, that is, one excludes the trivial equilibrium in which all jurors vote for acquittal irrespective
of their private information.
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our model, there may even be multiple strictly mixed equilibria. There may exist a strictly
mixed equilibrium with uninformative (or, in the language of Feddersen and Pesendorfer,
“non-responsive”) voting, just as there is under the majority rule (Ellis, 2016, Proposition
1), and this equilibrium may co-exist with another strictly mixed equilibrium in which
votes are informative (“responsive”): jurors randomise differently for different signals. Im-
portantly for our purposes, responsive strictly mixed equilibria may exist asymptotically —
for arbitrarily large jury size —so such equilibria cannot be ignored when proving the Jury
Paradox.
The next section introduces our model: a slight modification of Ellis’s which nests that

of Feddersen and Pesendorfer as a special case. Section 3 describes the best response (to
symmetric profiles) correspondence of a voter in our model, summarised by Figure 1. The
latter figure is an important guide for the reader through the subsequent analysis. Section
4 characterises a range of equilibria of the model. It is not an exhaustive stocktake but
does describe all of the strictly mixed equilibria, which come in a variety of forms; Figure
2 provides an overview of conditions for the existence of these equilibria. Our main result
(the Jury Paradox) is contained in Section 5 and Section 6 concludes. Several appendices
contain longer proofs and other technical details that would otherwise disrupt the flow of
the text.

2 The model

Our basic notation is based on that of Ellis (2016), suitably adapted to our purpose, but
we use the language of jury trials from Feddersen and Pesendorfer (1998). The reader is
referred to these papers for further discussion of the model.
A set I = {1, 2, ..., N + 1} of jurors, with generic member i, makes a decision d ∈ D =

{A,B} by secret ballot.4 Ellis (2016) requires N to be even since he focusses on majority
rule. We focus instead on the unanimity rule, so N may be even or odd here, provided
N ≥ 1.5 We interpret A as the decision to “acquit”the defendant; hence B corresponds to
entering a conviction. We use the same notation for decisions and votes: each juror may
vote A for acquittal (the “innocent”vote) or B for conviction (the “guilty”vote). Votes
determine the decision via the unanimity rule: the defendant is acquitted —decision d = A
is made —unless all jurors vote for conviction, in which case decision d = B is made.
The defendant may be innocent or guilty, represented by the state s ∈ S = {a, b},

where s = a is the state of innocence and s = b the state of guilt. (Think of b as the
state in which the defendant is “bad”.) Jurors share common ambiguous prior information
about the state. The prior probability of s = a, denoted p, is commonly known to lie in
the interval

[
p, p
]
⊆ (0, 1) but nothing more than this. Note that ambiguous beliefs are

4In Ellis the voters are selecting a candidate so he uses the notation c ∈ C rather than d ∈ D.
5Ellis denotes the cardinality of I by 2n + 1, for some positive integer n. We use N rather than 2n

since we allow an even number of jurors.
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objectively determined here; we have what Jaffray (1991) calls an environment of “imprecise
risk”. Subjective variation in the perception of ambiguity would, of course, be natural to
assume, but our purpose is to establish, as a benchmark, the pure effects of ambiguity. In
Feddersen and Pesendorfer’s model, as in Ellis’s, the precisely specified prior belief is also
assumed to be commonly held, and therefore objective in the same sense.
Prior to casting her vote, each juror receives a private signal t ∈ T = {1, 2}. Conditional

on s ∈ S, these signals are independently and identically distributed with Pr (1|a) =
Pr (2|b) = r ∈

(
1
2
, 1
)
. This information structure is a special case of that of Ellis (2016),

who allows T to be any finite set containing at least two elements, and the state-conditional
signal distributions to be arbitrarily specified. We specialise to the two-signal case so that
our results are comparable with those in Feddersen and Pesendorfer (1998).6

Let Ω = S×T I be the state space characterising all ex ante uncertainty. Each p ∈
[
p, p
]

determines a probability over Ω, with

Pr (a, t1, ..., tN+1) = prN+1−
∑
i(ti−1) (1− r)

∑
i(ti−1)

and
Pr (b, t1, ..., tN+1) = (1− p) r

∑
i(ti−1) (1− r)N+1−

∑
i(ti−1) .

The set of such probabilities is closed and convex, and denoted by Π. Each juror uses
full Bayesian updating (FBU) to condition on her privately observed signal: each prior
is updated by Bayes’ rule to form the juror’s (private) set of posteriors. The posterior
interval for the conditional probability Pr (a|ti = t) is independent of i (since each signal
is equally precise and signal distributions are identical across jurors) and is denoted by
Πt = [πt, πt], with generic element πt. Since

[
p, p
]
⊆ (0, 1) it follows that Πt ⊆ (0, 1) also.

Voters have maxmin expected utility (MEU) preferences and share a common Bernoulli
utility function, u : D × S → R, specified as follows: u (A, a) = u (B, b) = 1, u (A, b) = 0
and u (B, a) = −c, where c ≥ 0. Thus, all agree that A is the correct decision in state a
and B is the correct decision in state b. Ellis’s model is the special case in which c = 0.
When c > 0 errors attract asymmetric penalties: convicting the innocent results in lower
utility than acquitting the guilty.
Our model also nests that of Feddersen and Pesendorfer (1998). Their juror utility func-

tion is obtained by first applying the positive, affi ne transformation u 7−→ (c+ 2)−1 (u− 1)
and then defining

q =
c+ 1

c+ 2
(1)

Our model is therefore equivalent to Feddersen and Pesendorfer’s when p = p = 1
2
.7 In

particular:
πu (B, a) + (1− π)u (B, b) ≥ πu (A, a) + (1− π)u (A, b)

6Proposition 2 in Ellis (2016) also concerns this special case.
7Feddersen and Pesendorfer also allow c ∈ (−1, 0) (i.e., q ∈

(
0, 12
)
) but this case is symmetric to ours

—it effectively reverses the roles of the states —so nothing is lost by omitting it.
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⇔ π ≤ 1

2 + c
⇔ 1− π ≥ q (2)

Thus, B is an optimal decision if the decision-maker assesses that state s = a has proba-
bility no greater than (2 + c)−1; equivalently, that state s = b has probability no less than
q. One can think of Feddersen and Pesendorfer’s parameter q as quantifying the meaning
of “beyond reasonable doubt”. Belief in guilt must clear this hurdle in order for conviction
to be the preferred decision. In Feddersen and Pesendorfer’s model, this belief is the prob-
ability that the juror assigns to s = b after conditioning on her private signal and the event
that her vote is pivotal (given the voting strategies of the other voters). As Ellis (2016)
notes, matters are more complicated when jurors have ambiguous beliefs. Since a voter
has a set of posteriors after conditioning on her signal, and since the “operative”posterior
probability from this set may be decision-contingent, it is no longer possible to condition
on pivotality to determine optimal voting behaviour. We discuss this phenomenon in more
detail below.8

A strategy for voter i is a mapping from T to [0, 1], specifying the probability of casting
a B vote conditional on each possible signal realisation. Let σit denote the probability that
i ∈ I votes B after observing t ∈ T , and let σi = (σi1, σ

i
2) denote i’s strategy.

Following Feddersen and Pesendorfer (1998) and Ellis (2016), we focus exclusively on
symmetric equilibria, in which each voter follows the same strategy. Consider a generic
voter i who believes that the other voters follow a common strategy, denoted σ = (σ1, σ2).
Let ρs denote the probability that voter i’s vote is pivotal, conditional on being in state
s ∈ S; let θs denote the probability that i is not pivotal and (in addition) a “correct”
decision is made, again conditional on being in state s ∈ S. After observing her private
signal t ∈ T , voter i therefore chooses σit ∈ [0, 1] to maximise

min
πt∈Πt

πt
[
ρa
(
1− σit − cσit

)
+ θa − (1− ρa − θa) c

]
+ (1− πt)

[
ρbσ

i
t + θb

]
Of course, both ρs and θs depend on σ but (following Ellis) we suppress this dependence
in the notation for convenience. In particular, the unanimity rule implies that

ρa = [rσ1 + (1− r)σ2]N (3)

and
ρb = [(1− r)σ1 + rσ2]N (4)

while θa = 1− ρa and θb = 0. In other words, σit solves

max
σit∈[0,1]

min
πt∈Πt

V
(
σit, σ; πt

)
(5)

8See also Pan (2019).
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where
V
(
σit, σ; πt

)
= πt

[
1− (1 + c) ρaσ

i
t

]
+ (1− πt) ρbσit (6)

It is possible that minimising posterior in Πt may vary with σit, so we cannot condition on
pivotality when solving (5).
Since we focus on symmetric equilibria, we usually omit the player superscript on

strategies, and abuse notation by using σ = (σ1, σ2) to denote both the strategy of a
generic voter in a symmetric profile and the symmetric profile itself. We are interested in
symmetric strategy profiles (σ1, σ2) that form a Bayesian Nash equilibrium of this voting
game, in the sense that σit = σt solves (5) for each t ∈ T . The term “equilibrium”will be
used to indicate a symmetric profile that is a Bayesian Nash equilibrium.
To characterise equilibria we must first describe best responses to symmetric profiles.

This is done in the next section, and summarised by Figure 1.

Figure 1: Optimal responses

3 The best response correspondence

The symmetric profile σ = (0, 0) is always an equilibrium of our game. If σ1 = σ2 = 0
then ρa = ρb = 0 and anything is a best response for voter i, since the defendant will be
acquitted no matter how i votes. From now on we exclude this (uninteresting) equilibrium
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and focus on best responses to symmetric profiles with σ1 + σ2 > 0, so that ρa > 0
and ρb > 0 (i.e., profiles such that each voter has a positive probability of being pivotal
conditional on either state).
Consider Figure 1. In this figure,

π∗ (σ) =
ρb

ρb + (1 + c) ρa
=

1

1 + (1 + c) (ρa/ρb)
(7)

and σ̂∗ (σ) = min {σ∗ (σ) , 1}, where

σ∗ (σ) =
1

ρb + (1 + c) ρa
=

π∗ (σ)

ρb
(8)

Note that π∗ (σ) and σ∗ (σ) are well-defined when ρa > 0 and ρb > 0. The notation
emphasises the implicit dependence of π∗ and σ∗ on σ.
We use Figure 1 to identify i’s best response(s) to σ 6= (0, 0) as follows. First, calculate

π∗ (σ) and σ̂∗ (σ) using (7) and (8). Next, for each t ∈ T locate the point (πt, πt) in Figure
1 —it will obviously sit on or above the 45 degree line. The coloured region into which
(πt, πt) falls determines the optimal value(s) for σ

i
t as indicated in Figure 1.

Figure 1 will play a critical role in the arguments to follow. Its formal derivation is
described in Appendix A.
Recall that σ = (0, 0) is an equilibrium of our model. We will identify any other

equilibria with the help of Figure 1. Let us therefore pause to highlight the main features
of this figure.

• First, since π∗ (σ) ∈ (0, 1) for any σ 6= (0, 0), there is always a non-empty (green)
triangular region in which it is uniquely optimal to vote for A (acquittal) following
signal t, and a non-empty (blue) triangular region in which it is uniquely optimal to
vote for B (conviction) following signal t.

• Along the 45 degree line in Figure 1 there is no ambiguity and we recover the best
response correspondence for the model of Feddersen and Pesendorfer (1998). Voter i
strictly prefers to vote for A following signal t when πt = πt > π∗ (σ), strictly prefers
to vote for B when πt = πt < π∗ (σ) and is indifferent amongst all σit ∈ [0, 1] when
πt = πt = π∗ (σ).9

• Once we allow for ambiguous priors —that is, once we move above the 45 degree line
in Figure 1 —a much richer picture emerges. Suppose σ∗ (σ) < 1. Since (8) implies

9Let Pi denote the event in which i is pivotal, so that ρa = Pr [Pi|a]. It is easy to check that

Pr [a | Pi and ti = t] =
ρa Pr [a|ti = t]

ρa Pr [a|ti = t] + ρb Pr [b|ti = t]
.
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σ∗ (σ) > 0 when σ 6= (0, 0), there exist optimal responses with 0 < σit < 1 whenever
(πt, πt) lies in the rectangle between the two triangular regions, but only one point in
this rectangle —the southeast corner —at which all σit ∈ [0, 1] are optimal responses.
Moreover, at each point within the (pink) interior of the rectangle, σit = σ∗ (σ) is
the unique best response. This response perfectly hedges against uncertainty by
equalising the expected payoff in each state: the value of V (σ∗ (σ) , σ; πt) is the same
for all πt.

4 Equilibria

Since r > 1
2
it is easy to verify that (π1, π1) � (π2, π2): the point (π1, π1) will lie strictly

to the northeast of the point (π2, π2) when plotted in Figure 1. We therefore deduce the
following intuitive but important fact:

Lemma 4.1 If σ = (σ1, σ2) 6= (0, 0) is an equilibrium, then σ2 ≥ σ1.

In the language of Feddersen and Pesendorfer (1998), an equilibrium is non-responsive
if σ2 = σ1 and responsive if σ2 > σ1. We analyse these two classes of equilibria in
Sections 4.1 and 4.2 respectively. As a benchmark, recall that the (symmetric Bayesian
Nash) equilibria of Feddersen and Pesendorfer’s (1998) model exhibit the following features:
(i) σ1 = σ2 ∈ {0, 1} in any non-responsive equilibrium; (ii) σ2 = 1 in any responsive
equilibrium; and (iii) responsive equilibria are unique when they exist. It turns out that
none of these properties generalises to an environment with ambiguity.10

4.1 Non-responsive equilibria

As already noted, our voting game always has a trivial non-responsive equilibrium in
which σ1 = σ2 = 0. At the other extreme, if π1 is suffi ciently low, there exists another
non-responsive equilibrium with σ1 = σ2 = 1.

Therefore, using (1) and the facts that ρa > 0 and ρb > 0, we have:

Pr [a|ti = t] ≤ π∗ (σ) ⇔ Pr [a | Pi and ti = t] ≤ 1

2 + c

⇔ Pr [b | Pi and ti = t] ≥ q

The latter is the form in which the condition appears in Feddersen and Pesendorfer (1998).
10Proposition 4.1 shows that (i) does not hold; Proposition 4.2 proves that (ii) does not hold; Figure 2

illustrates the possibility of multiple responsive equilibria (though Lemma 4.3 establishes that there is at
most one responsive equilibrium with σ2 = 1, as in Feddersen and Pesendorfer’s model).
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Lemma 4.2 The symmetric profile with σ1 = σ2 = 1 is an equilibrium iff

π1 ≤
1

2 + c
.

Proof: From Figure 1, σ = (1, 1) is an equilibrium iff

π1 ≤ π∗ ((1, 1)) ⇔ π1 ≤
1

2 + c

where we have used (7). �

There may also exist a strictly mixed non-responsive equilibrium.

Proposition 4.1 There is at most one equilibrium with 0 < σ1 = σ2 < 1. Such an
equilibrium exists iff

π1 ≤
1

2 + c
≤ π2

in which case it is given by

σ1 = σ2 =

(
1

2 + c

) 1
N+1

.

Proof: From Figure 1 and the fact that (π1, π1) � (π2, π2), if σ is an equilibrium with
0 < σ1 = σ2 < 1 then it must be the case that σ1 = σ2 = σ∗. Moreover, if σ1 = σ2 then
ρa = ρb and hence

π∗ (σ) =
1

2 + c
(9)

from (7). We must therefore have

π1 ≤
1

2 + c
≤ π2 (10)

for such an equilibrium to exist (recall Figure 1). This proves the necessity of condition
(10).
Provided (10) holds, it follows that an equilibrium with σ1 = σ2 = x ∈ (0, 1) exists iff

x = σ∗ ((x, x)). Using (8) and (9), this is equivalent to

x =
π∗ ((x, x))

ρb
⇔ x =

1

(2 + c) [(1− r)x+ rx]N

⇔ x =
1

(2 + c)xN

⇔ x =

(
1

2 + c

) 1
N+1

9



Since (
1

2 + c

) 1
N+1

∈ (0, 1)

we have established the remaining claims in the proposition. �

When c = 0, Proposition 4.1 gives an analogue of Ellis (2016, Proposition 1) for the
unanimity rule (and our specialised information structure). Under condition (10), there
exists a strictly mixed equilibrium in which private signals are ignored and the associated
equilibrium probability of conviction is 1

2
. Moreover, if

π1 <
1

2
< π2 (11)

(i.e., when voters “lack confidence”, in the language of Ellis), then the equilibrium identified
in Proposition 4.1 is strict, in the sense that best responses (conditional on either signal)
are unique. The same is true for Ellis’result under majority rule.11 Lack of confidence
creates uncertainty about the “right”way to vote: since (π1, π1)� (π2, π2), and recalling
(2), condition (11) means that neither signal allows voters to exclude posteriors that justify
a strict preference for d = A nor posteriors that justify a strict preference for d = B. In
this situation, uncertainty-averse voters may strictly prefer to replace uncertainty with risk
by voting randomly.
If c > 0 then Proposition 4.1 establishes the existence of a qualitatively similar equi-

librium, albeit (not surprisingly) with a lower probability of conviction than when c = 0.
However, the conviction probability is still positive in either state and this probability is
independent of N .

4.2 Responsive equilibria

In Feddersen and Pesendorfer (1998) all responsive equilibria have σ2 = 1. Such equilibria
may also exist in our model. As in Feddersen and Pesendorfer’s model, they are unique
when they exist.

Lemma 4.3 There is at most one responsive equilibrium with σ2 = 1.

Proof: If σ = (σ1, 1) then
ρa
ρb

=

[
rσ1 + (1− r)
(1− r)σ1 + r

]N
11Proposition 4.1 (for c = 0) is somewhat stronger than Ellis’result (albeit for a restricted information

structure), in that Proposition 4.1 provides necessary and suffi cient conditions for existence of equilibria
with σ1 = σ2 ∈ (0, 1), and also establishes the uniqueness of such equilibria when they exist.
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which is strictly increasing in σ1. It follows that π∗ ((σ1, 1)) is strictly decreasing in σ1.
Using (8) we have

σ∗ ((σ1, 1)) =
π∗ ((σ1, 1))

[(1− r)σ1 + r]N
.

so σ∗ ((σ1, 1)) is also strictly decreasing in σ1. Suppose σ′ = (σ′1, 1) and σ′′ = (σ′′1, 1) are
both equilibria with 0 ≤ σ′1 < σ′′1 < 1. Then π∗ (σ′) > π∗ (σ′′) and σ∗ (σ′) > σ∗ (σ′′). Hence
σ̂∗ (σ′) ≥ σ̂∗ (σ′′). By inspection of Figure 1 we must therefore have σ′1 ≥ σ′′1, which is the
desired contradiction. �

Calculating the unique value of σ1 in such an equilibrium is less straightforward than
in Feddersen and Pesendorfer (1998), since there may be many σ1 values for which ran-
domisation is an optimal response to σ = (σ1, 1) given t = 1 (see Figure 1). Fortunately, it
is unnecessary to characterise σ1 in order to establish our main result, nor to identify the
precise conditions under which a responsive equilibrium with σ2 = 1 exists. We therefore
eschew any further discussion of these matters here, though the interested reader may find
such discussion in Fabrizi et al. (2019b).
In the presence of ambiguity, there may also exist responsive equilibria with σ2 < 1.

Provided N is suffi ciently large, such equilibria must have σ1 > 0.

Lemma 4.4 If N is suffi ciently large, there cannot exist a responsive equilibrium with
σ1 = 0.

Proof: Suppose σ satisfies 0 = σ1 < σ2. Then (7) and (8) give:

π∗ (σ) =
1

1 + (1 + c)
(

1−r
r

)N → 1 as N →∞

(where we have used the fact that r > 1
2
). Since π1 < 1 it follows, by inspection of Figure

1, that σ cannot be an equilibrium if N is suffi ciently large. �

Since our interest is in asymptotic properties of equilibria, we may therefore ignore
responsive equilibria with σ1 = 0. It remains to consider responsive equilibria which are
also strictly mixed. That is, equilibria with 0 < σ1 < σ2 < 1. It turns out that such
equilibria may exist in our model, even asymptotically. The following result is proved in
Appendix B.

Proposition 4.2 A responsive, strictly mixed equilibrium exists only if π2 ≥ π1. When
π2 ≥ π1 there exist functions α1 (N) and α2 (N) satisfying

1

2 + c
< α2 (N) ≤ α1 (N) ≤ rN

rN + (1− r)N (1 + c)
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for all N , such that a responsive, strictly mixed equilibrium exists iff either

1

2 + c
< π1 < α1 (N) (I)

or
1

2 + c
< π2 < α2 (N) (II)

The functions α1 and α2 are (implicitly) defined in Appendix B. We also provide a char-
acterisation (again, implicit) of each strictly mixed equilibrium. As the proof of Proposition
4.2 makes clear, when π1 < π2 and conditions (I) and (II) are both satisfied, there exist
exactly two strictly mixed responsive equilibria; if π1 = π2 then condition (II) implies
condition (I), and if (I) holds there is a continuum of strictly mixed responsive equilibria;
otherwise, there exists at most one strictly mixed responsive equilibrium. It is also worth
noting that if condition (II) holds and

π1 ≤
1

2 + c

then a strictly mixed responsive equilibrium co-exists with a non-responsive equilibrium of
the sort described in Proposition 4.1.
Figure 2 summarises the conditions for the existence of strictly mixed equilibria, both

responsive (Proposition 4.2) and non-responsive (Proposition 4.1). These conditions re-
strict π1 (measured on the horizontal axis of Figure 2) and π2 (measured on the verical
axis). A necessary condition for any strictly mixed equilibrium to exist is that π2 ≥ π1 so
only points on or above the diagonal are relevant; moreover, we have π1 > 0 and π2 < 1
by assumption. If (π1, π2) lies in the red area (including the red boundaries) then a non-
responsive, strictly mixed equilibrium exists. If (π1, π2) lies strictly between the horizontal
blue and red lines, or strictly between the vertical red and purple lines, then a responsive
strictly mixed equilibrium exists. In regions B and C of Figure 2 there exist multiple
strictly mixed equilibria: one responsive and one non-responsive equilibrium in region B;12

two responsive equilibria in region C.13

The equilibria of Proposition 4.2 are interesting in themselves. They are unique to
the model with ambiguity but Ellis (2016) does not identify any analogous equilibria in
the context of majority voting (which is not to say that none exists). However, they are
also relevant to our main purpose. The following lemma, which is proved in Appendix C,
verifies that such equilibria may exist for arbitrarily large N ; in particular, region D in
Figure 2 does not vanish in the limit as N →∞.
12Where B is taken to include the red vertical boundary (excluding its end points) but none of its other

boundaries.
13Where C is taken to include the green boundary (excluding its end points) but none of its other

boundaries.
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Figure 2: Parameter regions in which strictly mixed equilibria exist

Lemma 4.5 There exists some η > 0 such that

α1 (N) ≥ 1

2 + c
+ η

for all N , where α1 is the function whose existence is established in Proposition 4.2.

It follows that if π2 ≥ π1 and

1

2 + c
< π1 <

1

2 + c
+ η

there exists a strictly mixed responsive equilibrium for any N .
It is worth pausing to understand the nature of such an equilibrium — one whose

existence is guaranteed by condition (I) of Proposition 4.2. This nature is spelled out in
detail in Appendix B,14 but let us summarise its key features here. Suppose σ = (σ1, σ2)
denotes such an equilibrium. Then signal t = 2 puts a juror in two minds —one end of
the posterior interval supports vote A while the other end supports vote B —so the juror
randomises to perfectly hedge against this uncertainty: σ2 = σ∗ (σ) ∈ (0, 1). Signal t = 1

14And summarised in Figure 6(II).
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supports vote A but not decisively: the juror would be indifferent about how to vote if
she held posterior π1. It is therefore optimal to vote for A but also to vote for B with any
probability up to σ∗ (σ). Thus, σ1 ∈ (0, σ∗ (σ)) consistent with motivating a type t = 2
juror to hedge.
The indifference of the type t = 1 juror fixes the ratio ρa/ρb, and hence also the ratio

σ1/σ2.15 If parameter N increases, then the required ratio σ1/σ2 will also increase:16 since
ρa/ρb is less than 1 in any responsive equilibrium, raising N reduces the likelihood of being
pivotal in s = a relative to being pivotal in s = b, which necessites an off-setting increase
in σ1/σ2 (the probability of voting to convict given t = 1 relative to voting to convict given
t = 2). Let σ′ = (σ′1, σ

′
2) denote the new equilibrium strategy (for the higher value of N),

we must have σ′1/σ
′
2 > σ1/σ2. To ensure that the type t = 2 juror still wants to hedge,

we must also have σ′1 > σ1: if σ′1 ≤ σ1 then σ′2 < σ2 (given σ′1/σ
′
2 > σ1/σ2) which implies

σ∗ (σ′) > σ∗ (σ) from (8), so σ′2 < σ2 = σ∗ (σ) < σ∗ (σ′).17

Since σ′1/σ
′
2 > σ1/σ2, the new equilibrium strategies are closer to non-responsiveness

than the old, which is why, asymptotically, an equilibrium in this class can only exist for
parameter values suffi ciently close to the (red) western boundary of the C and D regions in
Figure 2. It is also a driving force behind our version of the Jury Paradox. Even for these
exotic equilibria, one type of juror must be maintained in a state of indifference, which
requires a fixed value for the likelihood ratio ρa/ρb. As the number of jurors increases, this
forces voting behaviour to become increasingly uninformative about private signals. A
similar phenomenon drives Feddersen and Pesendorfer’s result. The hard work is to show
that informativeness vanishes suffi ciently quickly to overcome the increasingly demanding
unanimity requirement such that error probabilities remain bounded away from zero. This
work is undertaken in the next section.

5 The Jury Paradox

We are now ready to prove our main result. Recall the Jury Paradox of Feddersen and
Pesendorfer (1998): excluding the trivial equilibrium in which σ = (0, 0), the equilibrium
probability that a convicted defendant is innocent is bounded away from zero independently
of N .18 In other words, under the unanimity rule, the probability that a conviction is
erroneous does not vanish in the limit. In this section we show that this result survives
the introduction of prior ambiguity into Feddersen and Pesendorfer’s model. The greater

15As described by the locus Ω (π1) in Figure 7 of Appendix B.
16As N increases, the line Ω (π1) in Figure 7 gets flatter.
17Consider equation (CI) in Appendix B. If we fix σ2 and increase N , then σ1 must increase to maintain

the equality. Hence, the curve of solutions to (C1) in Figure 7 must move rightwards. Since the curve
Ω (π1) is getting flatter, the value of σ1 must increase at the intersection.
18Feddersen and Pesendorfer (1998) actually bound this probability for any Bayesian Nash equilibrium

—symmetric or otherwise —in which there is a positive probability of conviction (ibid., Proposition 1).
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range, and more complex structure, of equilibria in the presence of ambiguity is what
renders this exercise non-trivial.
Let C denote the event that the defendant is convicted. For any non-responsive equi-

librium, the probability of conviction is independent of whether the defendant is guilty or
innocent, so the probability that a convicted defendant is innocent satisfies Pr (a|C) ≥ p > 0

for any N and any prior p ∈
[
p, p
]
. For any non-responsive equilibrium σ 6= (0, 0), the

probability of conviction is strictly positive and bounded away from zero independently of
N : Proposition 4.1 ensures that Pr (C) ≥ (2 + c)−1 when σ1 = σ2 ∈ (0, 1), and the same
bound obviously holds if σ = (1, 1). Thus, the probability that an innocent defendant is
convicted is bounded away from zero independently of N for any non-responsive equilib-
rium other than σ = (0, 0). In the rest of this section, we show that the same is true for
responsive equilibria.
We start by bounding the probability of innocence conditional on a conviction being

entered.

Proposition 5.1 There exists some κ > 0, which does not depend on N , such that in any
responsive equilibrium, Pr (a|C) ≥ κ for any prior p ∈

[
p, p
]
.

Proof: From Figure 1, if σ is a responsive equilibrium then π∗ (σ) ≤ π1. Hence, using (7),

` (π1) ≤ ρa
ρb

(12)

where
` (x) =

1− x
x (1 + c)

(13)

Since π1 ∈ (0, 1) it follows that ` (π1) > 0. Fix some prior p ∈
[
p, p
]
. We can use (12) and

Bayes’Rule to bound Pr (a|C) as follows:

Pr (a|C) =
pPr (C|a)

pPr (C|a) + (1− p) Pr (C|b)

=
p (ρa/ρb)

N+1
N

p (ρa/ρb)
N+1
N + (1− p)

≥ p` (π1)
N+1
N

p` (π1)
N+1
N + (1− p)

Letting

κ =
pmin

{
` (π1) , ` (π1)2}

pmin
{
` (π1) , ` (π1)2}+

(
1− p

) > 0
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gives a bound that is independent of N and p ∈
[
p, p
]
. �

It follows immediately that:

Corollary 5.1 There exists some κ > 0, which does not depend on N , such that for any
equilibrium σ 6= (0, 0),

Pr (a|C) ≥ min
{
κ, p

}
> 0

for any prior p ∈
[
p, p
]
.

It remains to show that the asymptotic probability of conviction is non-zero for respon-
sive equilibria.
For this purpose, it is convenient to divide the responsive equilibria into two categories:

those with σ2 = 1 and those with σ2 < 1. Equilibria in the former category have the same
qualitative features as the responsive equilibria in Feddersen and Pesendorfer (1998), and
are unique when they exist (Lemma 4.3). The following is proved in Appendix D.

Proposition 5.2 There exists γ > 0 such that any responsive equilibrium with σ2 = 1
satisfies

Pr (C|a) ≥
[

(2r − 1) ` (π1)
1
N

r − (1− r) ` (π1)
1
N

]N+1

≥ γ (14)

if N is suffi ciently large.19

It follows that the probability of convicting an innocent defendant in such an equilib-
rium is at least pγ > 0 for any prior p ∈

[
p, p
]
and any suffi ciently large N . It further

follows that the probability of conviction in any responsive equilibrium with σ2 = 1 is
bounded away from zero independently of N ∈ {1, 2, ...} and p ∈

[
p, p
]
.

It remains to consider the responsive equilibria with σ2 < 1. Recalling Lemma 4.4, any
such equilibrium must be strictly mixed when N is large. Lemma 4.5 confirms that strictly
mixed responsive equilibria may exist asymptotically. The following result, whose proof
may be found in Appendix E, shows that along any sequence of strictly mixed responsive
equilibria with jury size converging to infinity, the probability of conviction is bounded
away from zero uniformly in p ∈

[
p, p
]
.

Proposition 5.3 Suppose σ(k) is a strictly mixed responsive equilibrium for a jury of size
Nk ∈ {1, 2, ...}, with conviction probability Pr (C) = γk (p) for prior p ∈

[
p, p
]
. If Nk →∞

as k →∞, then
min
p∈[p,p]

[
lim inf
k→∞

γk (p)
]
> 0.

19Recall that ` (x) is defined in (13).
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Let us summarise the story so far. Excluding the trivial equilibrium, Corollary 5.1
says that the probability a convicted defendant is innocent is bounded away from zero
independently of N and p ∈

[
p, p
]
. The probability of conviction is likewise uniformly

bounded away from zero for non-trivial equilibria that are non-responsive (recall the dis-
cussion prior to Proposition 5.1) and for responsive equilibria (Propositions 5.2 and 5.3).
We have therefore arrived at our main result:

Theorem 5.1 For each N ∈ {1, 2, ...}, let σ(N) 6= (0, 0) be an equilibrium for a jury of
size N and let Pr (C|a) = ψ(N) (p) be the probability of convicting an innocent defendant in
σ(N) given prior p ∈

[
p, p
]
. Then

min
p∈[p,p]

[
lim inf
N→∞

ψ(N) (p)
]
> 0.

Theorem 5.1 gives an analogue of Feddersen and Pesendorfer’s (1998) Jury Paradox for
juries with ambiguous priors. Its statement is a little more cumbersome in the presence
of ambiguity, since responsive equilibria need not be unique even for arbitrarily large N .
However, its spirit is intact: under the unanimity rule, the probability of convicting an
innocent defendant is bounded away from zero, and this bound can be chosen independently
of the prior (within the allowable set

[
p, p
]
).

Theorem 5.1 holds even if c = 0. In this case, Ellis’s (2016) Theorem 2 tells us that
decisions by majority rule are asymptotically correct along some sequence of equilibria,
provided Π1 and Π2 have disjoint interiors. Our result does not require either italicised
caveat, but when Π1 and Π2 have disjoint interiors it follows that majority rule may
eliminate the possibility of convicting the innocent, at least asymptotically, whereas the
unanimity rule cannot.

6 Concluding remarks

Ellis (2016) established a qualified version of Condorcet’s favourable result for majority
voting (the “Jury Theorem”) in the presence of ambiguous prior beliefs. We have proved
an unqualified extension of Feddersen and Pesendorfer’s (1998) unfavourable result on the
unanimity rule (the “Jury Paradox”) to the environment with ambiguous priors.
An interesting by-product of this work has been a complete characterisation of the

strictly mixed equilibria of the voting game under unanimity. We have shown that respon-
sive strictly mixed equilibria may exist and may be non-unique; that they may co-exist
with non-responsive strictly mixed equilibria; and that they may exist for arbitrarily large
jury size. Fabrizi et al. (2019b) study responsive equilibria of the more conventional (i.e.,
Feddersen and Pesendorfer) variety: those with σ2 = 1. It turns out that these have some-
what curious comparative static properties as the level of ambiguity changes; properties
which we plan to test experimentally.
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This paper, like Ellis (2016), restricts the locus of ambiguity to the prior. However, it
is equally natural to consider the possibility that jurors may have ambiguous assessments
of the precision of signals: ambiguity about the conditional probabilities, Pr (s|t). Fabrizi
et al. (2019a) consider a variation on the present model in which jurors have precise prior
beliefs but entertain a set of values for r. They remain certain that everyone’s signal has
the same precision and that signal draws are independent. For “conventional”equilibria
(i.e., those with σ2 = 1), it is shown, both theoretically and experimentally, that voting is
more informative under ambiguity than it would be if jurors had precise beliefs about r,
specified as the mid-point of the interval under ambiguity.
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Appendix A

In this Appendix we describe the derivation of Figure 1.
Let us start by observing that (6) may be written as follows:

V
(
σit, σ; πt

)
= πt + σit ((1− πt) ρb − (1 + c) πtρa)
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Recalling (7), it follows that V (σit, σ; πt) is strictly decreasing in σit iff πt > π∗ (σ); strictly
increasing in σit iffπt < π∗ (σ); and constant in σit iffπt = π∗ (σ). Thus, if all the posteriors
in Πt are (strictly) on the same side of π∗ (σ), then voter i’s response follows the same logic
as in Feddersen and Pesendorfer (1998): recall footnote 9. In particular, if π∗ (σ) < πt
then the function

V ∗
(
σit, σ

)
≡ min

πt∈Πt

V
(
σit, σ; πt

)
(15)

is the lower envelope of functions that are strictly decreasing in σit so V
∗ itself is strictly

decreasing in σit. It follows that σ
i
t = 0 is the unique best response to σ (conditional on

ti = t) when π∗ (σ) < πt. Conversely, if π
∗ (σ) > πt then (15) is strictly increasing in σit so

σit = 1 is the unique best response to σ (again, conditional on ti = t). This gives the green
and blue regions (respectively) in Figure 1.

Figure 3: Best responses when πt ≤ π∗ (σ) ≤ πt and σ∗ (σ) ≥ 1. In case (a), πt < π∗ (σ)
so σit = 1 is optimal. In case (b), πt = π∗ (σ) so any σit ∈ [0, 1] is optimal.

It remains to consider the case in which πt ≤ π∗ (σ) ≤ πt: the case described by the
pink rectangle in Figure 1 and its (brown and purple) boundaries. To analyse this case, it
is convenient to re-write (6) as follows:

V
(
σit, σ; πt

)
= σitρb + πt

(
1− (1 + c) ρaσ

i
t − ρbσit

)
Recalling (8), we observe that

1− (1 + c) ρaσ
∗ (σ)− ρbσ∗ (σ) = 0
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Figure 4: Best responses when πt ≤ π∗ (σ) ≤ πt and σ∗ (σ) < 1. In case (i), πt < π∗ (σ) so
σit = σ∗ (σ) is optimal. In case (ii), πt = π∗ (σ) so any σit ∈ [0, σ∗ (σ)] is optimal.

and hence

V ∗
(
σit, σ

)
=


V (σit, σ; πt) if σit ≤ σ∗ (σ)

V (σit, σ; πt) if σit ≥ σ∗ (σ)

In other words, πt is the uniquely most “pessimistic” posterior in Πt when σit < σ∗ (σ)
and πt is the uniquely most “pessimistic”posterior when σit > σ∗ (σ). Moreover, by choos-
ing σit = σ∗ (σ) voter i can perfectly hedge against uncertainty, since V (σ∗ (σ) , σ; πt) is
independent of πt. The latter hedging possibility may provide strict incentives to ran-
domise, as noted by Ellis (2016). The t-conditional best response(s) to any σ satisfying
πt ≤ π∗ (σ) ≤ πt may now be characterised as follows:

• If σ∗ (σ) ≥ 1 then V ∗ (σit, σ) = V (σit, σ; πt) for any σ
i
t ∈ [0, 1], so σit = 1 is uniquely

optimal if πt < π∗ (σ), and any σit ∈ [0, 1] is optimal if πt = π∗ (σ). See Figure 3.

• If σ∗ (σ) < 1 then V ∗ (σit, σ) is non-decreasing in σit when σ
i
t < σ∗ (σ), since πt ≤

π∗ (σ), and non-increasing in σit when σ
i
t > σ∗ (σ), since πt ≥ π∗ (σ). Hence: (i)

σit = σ∗ (σ) is uniquely optimal if πt < π∗ (σ) < πt; (ii) any σit ∈ [0, σ∗ (σ)] is optimal
if πt = π∗ (σ); and (iii) any σit ∈ [σ∗ (σ) , 1] is optimal if πt = π∗ (σ). Figure 4
illustrates cases (i) and (ii).20 Case (iii) is symmetric to (ii).

20Think of the horizontal axes in Figures 3 and 4 as the ground, with a see-saw above. The fulcrum
of the see-saw is at σ∗ (σ) and the set Πt determines its range of motion, with π∗ (σ) corresponding to
the see-saw in a horizontal position, and values of πt above (respectively, below) π∗ (σ) corresponding to
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Appendix B

In this Appendix we prove Proposition 4.2.
We start with an important preliminary result. To facilitate its statement, let us define

Γ =
{

(σ1, σ2) ∈ [0, 1]2 | σ1 ≤ σ2 and σ2 > 0
}

Set Γ contains all the strategies with σ1 ≤ σ2 excluding σ = (0, 0).

Lemma 6.1 Let Ω (x) = {σ ∈ Γ | π∗ (σ) = x}. Then: (i) Ω (x) = ∅ iff

x /∈
[

1

2 + c
,

rN

rN + (1− r)N (1 + c)

]
;

(ii) Ω (x) = {σ ∈ Γ | σ1 = 0} if

x =
rN

rN + (1− r)N (1 + c)
;

and (iii) Ω (x) = {σ ∈ Γ | σ2 = λ (x)σ1} otherwise, where

λ (x) =
r − (1− r) ` (x)

1
N

r` (x)
1
N − (1− r)

∈ [1,∞) and ` (x) =
1− x

x (1 + c)
.

Proof: Since σ ∈ Γ we have

π∗ (σ) = x ⇔ ρa
ρb

= ` (x) (16)

from (7).21 The likelihood ratio ρa/ρb is equal to[
ry + (1− r) (1− y)

(1− r) y + r (1− y)

]N
where y = σ1/ (σ1 + σ2) ∈

[
0, 1

2

]
. It follows that(

1− r
r

)N
≤ ρa
ρb
≤ 1

a downward (respectively, upward) slope from left to right. The function V ∗
(
σit, σ

)
describes the lower

envelope of the see-saw’s trajectory over the range σit ∈ [0, 1].
21In particular, there is a one-to-one relationship between π∗ (σ) and the likelihood ratio ρa/ρb. If

σ ∈ Ω (x) then this ratio is given by ` (x).
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Using these inequalities and (16) we deduce that Ω (x) 6= ∅ iff

1

2 + c
≤ x ≤ rN

rN + (1− r)N (1 + c)
.

This proves (i). When

x =
rN

rN + (1− r)N (1 + c)

we have

` (x) =

(
1− r
r

)N
Using (3)-(4) it is clear that σ ∈ Γ satisfies

ρa
ρb

=

(
1− r
r

)N
iff σ1 = 0. This proves (ii). Finally, if

1

2 + c
≤ x <

rN

rN + (1− r)N (1 + c)

then (3)-(4) and (16) imply

π∗ (σ) = x ⇔ σ2 = λ (x)σ1.

with λ (x) ∈ [1,∞). This establishes (iii) and completes the proof of Lemma 6.1. �

Figure 5 illustrates Ω (x).
Now consider Proposition 4.2. It is obvious from Figure 1 that π2 ≥ π1 is necessary

for the existence of a responsive, strictly mixed equilibrium: otherwise it would not be
possible for both (π1, π1) and (π2, π2) to both lie in the rectangular region between the
green and blue triangles in Figure 1. We assume π2 ≥ π1 henceforth.
Suppose σ̂ ∈ Γ′ = {σ ∈ Γ | 0 < σ1 < σ2 < 1} (i.e., σ̂ is strictly mixed and responsive).

By inspection of Figure 1 it is evident that in order for σ̂ to be an equilibrium, we must
have π2 = π∗ (σ̂) or π1 = π∗ (σ̂) or both. If both conditions hold, then π2 = π1. Let us
temporarily assume that π2 > π1. The case π2 = π1 will be considered later.
If π∗ (σ̂) = π1 < π2, then σ̂ will be an equilibrium iff σ̂2 = σ∗ (σ̂). See Figure 6(I).

Similarly, if π∗ (σ̂) = π2 > π1, then σ̂ will be an equilibrium iff σ̂1 = σ̂∗ (σ). See Figure
6(II). If π∗ (σ̂) = x then the condition σ̂t = σ∗ (σ̂) may be expressed, using (8), as follows:

[(1− r) σ̂1 + rσ̂2]N σ̂t = x.

Thus, when π2 > π1 there exists a strictly mixed responsive equilibrium iff at least one
of the following two conditions is met:
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Figure 5: Note that the points in Ω (x) form a line, and this line gets steeper as x increases

(I′) There exists σ ∈ Ω (π1) ∩ Γ′ satisfying

[(1− r)σ1 + rσ2]N σ2 = π1 (CI)

(II′) There exists σ ∈ Ω (π2) ∩ Γ′ satisfying

[(1− r)σ1 + rσ2]N σ1 = π2 (CII)

Consider condition (I′). Note first, using Figure 5, that Ω (π1) ∩ Γ′ 6= ∅ iff

1

2 + c
< π1 <

rN

rN + (1− r)N (1 + c)
(17)

Now consider Figure 7. The set Γ′ is the interior of the red triangle. The line corresponding
to Ω (π1) is indicated, under the assumption that π1 satisfies (17). The other locus in Figure
7 describes the set of solutions to (CI): it is easily verified that the implicit function defined
by (CI) is convex with a strictly negative slope, and that

σ1 = σ2 = π
1

N+1

1

lies on the graph of this function. Condition (I′) requires that these two loci intersect in
Γ′. Such an intersection will obviously be unique if it exists. An intersection in Γ′ will
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Figure 6: Strictly mixed responsive equilibria when π2 > π1

obtain iff the Ω (π1) locus hits the top of the red triangle strictly to the right of the locus
of solutions to (CI), as illustrated in Figure 7.
Recall from Figure 5 that the locus Ω (π1) hits the top of the red triangle at λ (π1)−1.

Given x ∈ (0, 1), let hI (x) denote the value of σ1 that solves

[(1− r)σ1 + r]N = x (18)

(noting that this solution might be negative).22 Hence, condition (I ′) is satisfied iff (17)
and

hI (π1) <
1

λ (π1)
(19)

Using the fact that hI (x) is strictly increasing we may re-write condition (19) as follows:[
(1− r)λ (π1)−1 + r

]N
> π1 ⇔ 2r − 1

r − (1− r) ` (π1)1/N
> π

1/N
1

⇔ rπ
1/N
1 − (1− r)

(
1− π1

1 + c

)1/N

< 2r − 1 (20)

where the first equivalence uses the definition of λ (π1) and the second uses the definition
of ` (π1). It is obvious that the left-hand side of (20) is strictly increasing in π1 so there

22That is, the locus of solutions to (CI) may hit the left-hand edge of the triangle rather than the top
edge.
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Figure 7: Strategy σ satisfies (I′) iff it lies in the interior of the red triangle at the inter-
section of the green and blue curves

is some β1 (N) such that (20) is equivalent to π1 < β1 (N), where the notation emphasises
the dependence of this upper bound on N . Letting

α1 (N) = min

{
β1 (N) ,

rN

rN + (1− r)N (1 + c)

}
we have therefore shown that (I′) holds iff (I). (We will verify the stated properties of α1

shortly.)
Next, consider condition (II′). We have Ω (π2) ∩ Γ′ 6= ∅ iff

1

2 + c
< π2 <

rN

rN + (1− r)N (1 + c)
(21)

This time σ ∈ Ω (π2) ∩ Γ′ is an equilibrium if it sits at the intersection of Ω (π2) and the
locus defined by (CII). Given x ∈ (0, 1), let hII (x) denote the value of σ1 that solves

[(1− r)σ1 + r]N σ1 = x (22)

It is obvious that this solution exists and is unique. Moreover, hII (x) ∈ (0, 1) for any
x ∈ (0, 1). Reasoning as for condition (I′), mutatis mutandis, we deduce that: condition
(II ′) is satisfied iff (21) and

hII (π2) <
1

λ (π2)
(23)
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This time, we use the facts that λ (x) is strictly increasing and hII (π2) ∈ (0, 1) to re-write
condition (23) as follows:

π∗ ((hII (π2) , 1)) > π2 ⇔
[
rhII (π2) + (1− r)
(1− r)hII (π2) + r

]N
< ` (π2)

⇔ [rhII (π2) + (1− r)]N hII (π2) < π2` (π2)

⇔ [rhII (π2) + (1− r)]N hII (π2) <
1− π2

1 + c
(24)

where the second equivalence uses the definition of hII (π2). Since hII (x) is strictly increas-
ing, it is easy to see that there is some β2 (N) such that (24) is equivalent to π2 < β2 (N).
Letting

α2 (N) = min

{
β2 (N) ,

rN

rN + (1− r)N (1 + c)

}
we deduce that (II′) holds iff (II).
Let us now verify the stated properties of the functions α1 and α2. Comparing (22)

and (18), it is obvious that hI (x) < hII (x) for all x ∈ (0, 1). Thus, if π2 = z satisfies (23)
then π1 = z satisfies (19). It follows that β1 (N) ≥ β2 (N). To see why β2 (N) > (2 + c)−1,
set π2 = (2 + c)−1 in (24) to obtain:[

rhII

(
1

2 + c

)
+ (1− r)

]N
hII

(
1

2 + c

)
<

1

2 + c
.

This inequality must hold since, by the definition of hII , we have:[
(1− r)hII

(
1

2 + c

)
+ r

]N
hII

(
1

2 + c

)
=

1

2 + c

⇒
[
rhII

(
1

2 + c

)
+ (1− r)

]N
hII

(
1

2 + c

)
<

1

2 + c

where we have used r > 1
2
and hII

(
(2 + c)−1) ∈ (0, 1). Hence, β2 (N) > (2 + c)−1 and we

have therefore established that α1 (N) ≥ α2 (N) > (2 + c)−1 for all N .
Finally, let us return to the scenario in which π2 = π1. Then σ is a strictly mixed

responsive equilibrium iff
σ ∈ Ω (π1) ∩ Γ′

and σ1 ≤ σ∗ (σ) ≤ σ2. See Figure 8(a). Note that

σ1 ≤ σ∗ (σ) ≤ σ2 ⇔ [(1− r)σ1 + rσ2]N σ1 ≤ π1 ≤ [(1− r)σ1 + rσ2]N σ2
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Figure 8: The case π2 = π1.

In other words, σ must lie in the region whose western boundary is the locus determined
by (CI) and whose eastern boundary is the locus described by the equation

[(1− r)σ1 + rσ2]N σ1 = π1 (∗)

See Figure 8(b). This region has a non-empty intersection with Ω (π1) ∩ Γ′ iff (19) holds,
which is equivalent to (I).

Appendix C

In this Appendix we prove Lemma 4.5.
First, let ε > 0 be small enough to satisfy23

r ln

(
1

2 + c
+ ε

)
< (1− r) ln

(
1

2 + c
− ε

1 + c

)
(25)

23There exists such an ε since setting ε = 0 in (25) gives:

(2r − 1) ln

(
1

2 + c

)
< 0

which is obviously true.
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We claim that
π1 =

1

2 + c
+ ε (26)

(and hence any smaller value of π1) satisfies (20) when N is suffi ciently large, and hence
that

β1 (N) ≥ 1

2 + c
+ ε

for suffi ciently large N . To verify this claim, substitute (26) into (20) to get

r

(
1

2 + c
+ ε

)1/N

− (1− r)
(

1

2 + c
− ε

1 + c

)1/N

< 2r − 1 (27)

Let g (N) denote the left-hand side of (27). It is obvious that

lim
N→∞

g (N) = 2r − 1 (28)

To prove our claim, it suffi ces to show that g is strictly increasing when N is suffi ciently
large, since g then approaches this limit from below and it follows that (27) must hold for
large N .
To see that g is strictly increasing for large N , let

g (x) = r

(
1

2 + c
+ ε

)x
− (1− r)

(
1

2 + c
− ε

1 + c

)x
.

Then

g′ (x) = r

(
1

2 + c
+ ε

)x
ln

(
1

2 + c
+ ε

)
− (1− r)

(
1

2 + c
− ε

1 + c

)x
ln

(
1

2 + c
− ε

1 + c

)
Hence:

lim
x→0

g′ (x) = r ln

(
1

2 + c
+ ε

)
− (1− r) ln

(
1

2 + c
− ε

1 + c

)
which is strictly less than zero by (25). It follows that g (N) is strictly increasing for large
N .
Using the fact that r ∈

(
1
2
, 1
)
we have

lim
N→∞

rN

rN + (1− r)N (1 + c)
= lim

N→∞

1

1 +
(

1−r
r

)N
(1 + c)

= 1 (29)

and hence
α1 (N) ≥ 1

2 + c
+ ε
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for all suffi ciently large N . Since α1 (N) > (2 + c)−1 for all N , there must exist some η > 0
such that

α1 (N) ≥ 1

2 + c
+ η

for all N .

Appendix D

In this Appendix we prove Proposition 5.2.
By Lemmas 4.1 and 4.4, ifN is suffi ciently large, any responsive equilibrium with σ2 = 1

must have σ1 ∈ (0, 1). Hence, if (σ1, 1) is a responsive equilibrium and N is suffi ciently
large, then

π1 ≤ π∗ ((σ1, 1)) ≤ π1 (30)

(see Figure 1). Recalling (29), we have

π1 <
rN

rN + (1− r)N (1 + c)

for suffi ciently large N . Combining this fact with (30) and Figure 5 we see that

0 < λ−1 (π1) ≤ σ1

in any responsive equilibrium with σ2 = 1, provided N is suffi ciently large. In such an
equilibrium:24

Pr (C|a) ≥
[
rλ (π1)−1 + (1− r)

]N+1
=

[
(2r − 1) ` (π1)

1
N

r − (1− r) ` (π1)
1
N

]N+1

> 0

24Using (1) we see that
1

c+ 1
=

1− q
q

so [
(2r − 1) ` (π1)

1
N

r − (1− r) ` (π1)
1
N

]N+1
=

 (2r − 1)
(
(1−q)(1−π1)

qπ1

) 1
N

r − (1− r)
(
(1−q)(1−π1)

qπ1

) 1
N


N+1

.

If π1 = r this is identical to the expression for lI (r, g,N + 1) on p.26 of Feddersen and Pesendorfer (1998).
Moreover, if π1 = r then condition (31) is equivalent to q > 1 − r, which is necessary in Feddersen and
Pesendorfer’s model to ensure the existence of a responsive equilibrium; otherwise, if q ≤ 1 − r, then
σ = (1, 1) is an equilibrium of the Feddersen and Pesendorfer model. Likewise, when (31) is violated in
our model, σ = (1, 1) is an equilibrium but no responsive equilibrium exists.
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where the final inequality uses λ−1 (π1) > 0. It follows that

` (π1) < 1 ⇔ π1 >
1

2 + c
(31)

in any responsive equilibrium with σ2 = 1 and large N :25 if ` (π1) ≥ 1, then 2r − 1 > 0
and [

(2r − 1) ` (π1)
1
N

r − (1− r) ` (π1)
1
N

]N+1

> 0

would imply r − (1− r) ` (π1)
1
N and hence

Pr (C|a) ≥
[

(2r − 1) ` (π1)
1
N

r − (1− r) ` (π1)
1
N

]N+1

≥
[

(2r − 1) ` (π1)
1
N

r` (π1)
1
N − (1− r) ` (π1)

1
N

]N+1

= 1

which is impossible (since conviction cannot be certain, conditional on s = a, in an equi-
librium with σ1 < 1).
To complete the proof we will show that[

(2r − 1) ` (π1)
1
N

r − (1− r) ` (π1)
1
N

]N+1

=

[
(2r − 1)

r − (1− r) ` (π1)
1
N

]N+1

` (π1)
N+1
N (32)

has a strictly positive limit as N →∞ when 0 < ` (π1) < 1. Since

lim
N→∞

` (π1)
N+1
N = ` (π1) > 0

the limit of (32) is strictly positive iff

lim
N→∞

[
(2r − 1)

r − (1− r) ` (π1)
1
N

]N+1

> 0 (33)

We follow the logic on p.32 of Feddersen and Pesendorfer (1998) to establish (33) as follows:

lim
N→∞

[
(2r − 1)

r − (1− r) ` (π1)
1
N

]N+1

≥ lim
N→∞

[
(2r − 1)

r − (1− r)
[
1− (N + 1)−1 ln ` (π1)

]]N+1

= lim
N→∞

[
1 + (1− r) (N + 1)−1]−(N+1)

= exp

[
−
(

1− r
2r − 1

)
ln ` (π1)

]
= ` (π1)−(1−r)/(2r−1)

25In fact, Fabrizi et al. (2019b) show that this is necessary for any N .
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where the inequality and second equality use Feddersen and Pesendorfer’s (1998) expres-
sions (6) and (5) respectively.

Appendix E

In this Appendix we prove Proposition 5.3.
Suppose σ(k) is a strictly mixed responsive equilibrium for a jury of size Nk ∈ {1, 2, ...},

with Nk →∞ as k →∞. It follows that π1 ≤ π2. From the proof of Proposition 4.2, each
σ(k) satisfies [

(1− r)σ(k)
1 + rσ

(k)
2

]Nk
σ

(k)
2 = π1

or [
(1− r)σ(k)

1 + rσ
(k)
2

]Nk
σ

(k)
1 = π2.

Therefore σ(k)
t → 1 as k →∞ for each t ∈ T , and hence

lim inf
k→∞

[
(1− r)σ(k)

1 + rσ
(k)
2

]Nk
≥ π1.

Since
lim
k→∞

[
(1− r)σ(k)

1 + rσ
(k)
2

]
= 1

we have
lim inf
k→∞

[
(1− r)σ(k)

1 + rσ
(k)
2

]Nk+1

≥ π1.

Note that, for equilibrium σ(k),

Pr (C|b) =
[
(1− r)σ(k)

1 + rσ
(k)
2

]Nk+1

so the probability of conviction in σ(k) is at least

(1− p)
[
(1− r)σ(k)

1 + rσ
(k)
2

]Nk+1

for any p ∈
[
p, p
]
. Thus:

min
p∈[p,p]

[
lim inf
k→∞

γk (p)
]
≥ (1− p) π1 > 0.
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