
Using Machine Learning 
Algorithms and Triangulation 
to Map and Track Entities 
from Live Video Footage for 
AUT

Authored by:

Axel Couldrey – 14880202
Yiluo Huang – 16929381
JieQiong Yu – 18017677

Mentor: Parma Nand

Purpose

A joint data science research project between Singapore and New Zealand is currently
being conducted. This research is centred around the use of Artificial Intelligence and
the Internet of Things to enhance citizen security, lighting, and parking and traffic
control, in order to create smart, green, energy efficient cities. Much research has
already been completed informing that smart cities produce a higher quality of living.
To the left; IBM and Griffinger define what makes a smart city.

However, there is a misalignment between top-down smart city development and
citizen’s needs. Public participation is essential in smart city development, but it is
usually neglected, leading to a dislocation of council and society within a city.
Therefore, technologies must be employed to connect citizens and corporations more
closely to the improvement of the smart cities’ initiative.

The goals set by our client were divided into two parts:

Part 1, consisting of mapping individuals on local area maps, will let any corporations,
who possess large areas with many points of interest and many users of these points of
interest, to provide locations in relation to their facilities to all who require it. The
technology could eventually be purchasable by any party as it will become very
profitable for user experience in any area.

Part 2, consisting of tracking vehicles and pedestrians using live camera footage, will
allow governments and transport agencies to gather extremely useful data surrounding
the locations of objects, types of objects (car, truck, person), and their speed and
direction. Then the data can be transferred to semi-AI systems to control parts of a city
without need for human interaction making city maintainability and living easier.

Rationale

The rationale for this project stems from the need expressed above for citizens,
government, and service providers to be connected and aware of the progress made in
technology to ensure more habitable cities.

Citizens should be able to know in real time, without losing their privacy; where they
are, what is around them, any opportunities around them, and any potential hazards.
Technology can achieve this and so must be concisely provided to all citizens. It follows
then that smart cities will track citizens and other objects in the city, all while not
breaking privacy barriers. The eventuality of a smart city knowing where citizens are and
identifying hazards will allow automatic control over the improvement of environment
and the notification of opportunities and hazards to citizens.

The data gathered by this project will permit for these progressions to be made and
lead to much more liveable cities and more productive communities.

No prior work had been completed for the client, so our task was to involve research
from a base level of little understanding.

Method

As a team we began this project rather blind. Two of the three members were currently studying image
processing and the third had no experience in the field. We began by addressing the issue of a
technology stack. For part one, what were we trying to achieve was a final mobile application product
which could be distributed to users who needed guidance in a local area maps such as zoos or
universities. For part two, we just needed a proof of concept, therefore, any information storage from
an MLA we felt would do.

This meant choosing a platform for mobile development which we decided should be iOS due a clean
IDE and integration with our goals of obtaining user location and triangulating position. We used this
on the provided Apple computers in AUT. This would alter prove troublesome as we had to move
systems because of the global pandemic. We decided to switch to QPython and use an android
simulator to rebuild the GPS code.

Then for part 2 of the project we used a collection of software
and languages to achieve our goal.

Kivy is a module for developing applications on Python which
we imported and used for multiple sections of our project.
Then we implemented the combination of Yolov3 and deep
sort. These are modules used for object tracking and
detection.

QPython is an application for writing python on an android
device which we used for getting our Android GPS results. This
allowed us to record user locations very easily. Then we only
had to implement and Android emulator to test the
functionality.

The programming languages we used to achieve success
within these software frameworks were; initially swift, and then
Python. As stated previously due to COVID-19 we couldn’t
continue to use swift so we changed to Python which was used
for all of our project and provided little resistance.

Product artefacts

We delivered most of what we set out to deliver during this project.
High-level requirements were followed by all team members.

Our high-level requirements outlined in our proposal were as follows:

Part 1 Product Requirements:

• The local area map will be viewable in an application.
• Triangulation points will be retrieved from Google Maps and mapped onto the 

local area map.
• The application created will show the user’s current position using the 

triangulation points in reference to the user’s GPS position.
• The location of the user will be accurate to within 1 meter against the local map
• The application will update in real time with movement of a user
• The source of the user’s location will not break privacy.

Part 2 Product requirements:

• Cars pedestrians and trucks will be differentiated by the image processing 
algorithm.

• Location information about the objects processed will be gathered using the 
same technique from project one with triangulation against Google Maps. 

• Locations, timestamps, and type of object will be recorded by a linked 
database in order for the data to be used later to map or provide statistics of 
traffic flow.

• Information gathered will be displayed on an application in a table format. 
• The data will be mapped back onto a local area map viewable in an app 

analogous to the one created in part 1.

We delivered a GPS application using android, Kivy, and QPython. This
is shown to the top right in the map of AUT, where a red dot represents
the location of the user. This user application updates every second
allowing for an accurate location using a triangulation method with
three arbitrary points. This simple application works well as it has little
room for error. As long as the coordinates provided by the user are
accurate and the three arbitrary points are consistent, the location is
very accurate.

We also delivered a tracking a mapping portion of the project using a
combination of yolov3 (a machine learning algorithm for image
detection) and an mp4 video file. Originally it was planned to use a live
video feed, but we struggled connecting the two and found it just as
profitable to connect a recorded video as it was a proof of concept. The
data pf all passing entities was recorded using different coloured
rectangles which the algorithm could distinguish. Then the total number
of entities at any moment could be recorded. A working screenshot of
this algorithm is shown below the map.

Class in which the
map system gets the
current number of
entities and prints it
to the screen every
second

Code to provide
different colour
rectangles for each
entity showing that
two people are not
the same.

Difficulties

We had five notable technical difficulties during this project:

1. Because of the nature of our project in having to change programming language from swift to Qpython, an issue arose where we could not
connect Qpython to Kivy. Qpython’s latest update didn’t allow for Kivy support meaning we couldn’t directly update the user location
automatically to the GPS map. This couldn’t be fixed because of location constraints for our group members and insufficient access to certain
machines, but it could be an easy fix in the future through a further update of Qpython or Kivy.

2. We had trouble getting the API for a live video feed from YouTube to run alongside our deep sort model. This was easily overcome with an mp4
video which worked seamlessly and was sufficient for proof of concept.

3. Along with the group separation we wanted all parts of our code to eventually work together. This wasn’t achieved in the project but to ensure that
it could be in future, we decided to change from swift to python as it was easier to connect components. This wasn’t so much of a difficulty as just
time consuming. But necessary.

4. We could not print the positions of entities gathered by the machine learning algorithm on to an updating map. This was one of the last
requirements posed by our client and was not a complete necessity, but we still hoped we could complete it. All we achieved was to show the
coordinates of the actual camera on the map and provided the number of entities passing. This was a sufficient workaround and could be fixed in
the future.

5. Our original swift triangulation method was very accurate when the user was positioned in the center of the map (around 10 meters), but as we
changed platform, we had to move this method to python. Python proved to be less accurate (around 50-100 meters). This was annoying but as
we didn’t have access to our previous code, we could not combat it.


