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ABSTRACT 

State merit scholarships may affect academic outcomes for low-performing college students, yet 

low-performers are generally overlooked in existing literature.  New Mexico’s lottery 

scholarship provides tuition-free college to residents meeting a uniquely “low-bar” eligibility 

criteria.  Using administrative data, a discontinuity in eligibility rules identifies local average 

treatment effects on degree completion and course taking behavior for students with below-

average college grades.  Results suggest a reduction in time-to-degree corresponding to the 

scholarship’s funding cap, with no overall change in degree completion.  Despite modest 

eligibility requirements related to credit completion, the scholarship increased credit completion 

among low-achieving students.  Some students appear to manipulate scholarship eligibility by 

taking fewer courses or strategically dropping courses during a qualifying semester in order to 

secure aid.  A bounding exercise suggests partial manipulation of eligibility rules results in 

selection bias which underestimates the true effect of the scholarship on time to degree and credit 

completion. 
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INTRODUCTION 

 

Since the early 1990s, over half of U.S. states appealed to merit-based scholarships to 

reduce college costs for qualified resident students.1  State merit scholarships cover a significant 

proportion of tuition and fees for residents attending in-state public institutions meeting 

eligibility requirements typically tied to high school GPA, standardized test scores, class rank, or 

some combination thereof.  The shift toward merit scholarships has changed the landscape of 

financial aid in the United States.  Merit scholarships have not merely replaced existing need-

based funding, but instead increased the overall amount of financial aid available to students 

(Bell, Wehde, and Stucky, 2018).  In the 1990-1991 academic year, prior to the launch of the 

first state merit scholarship in Arkansas, states awarded $427.6 million in merit-based financial 

aid.  The proportion of state awards based solely on academic merit was approximately 12 

percent.  By the 2015-2016 academic year, this amount increased to $2.6 billion, representing 24 

percent of all state awards.2  Given substantial merit-based investments aiming to increase access 

and achievement in higher education, it remains central whether such programs meet their 

objectives. 

                                                        
 
 
 
 
1Levitz, Jennifer and Scott Thurn, “Shift to Merit Scholarships Stirs Debate,” Wall Street 

Journal, 19 December 2012, 

https://www.wsj.com/articles/SB10001424127887324481204578175631182640920 (retrieved 

10 October 2018). 
2Figures are in 2016 dollars.  From National Association of State Student Grant and Aid 

Programs, 47th Annual Survey Report on State-Sponsored Student Financial Aid, 2015-2016 

Academic Year, https://www.nassgapsurvey.com/survey_reports/2015-2016-47th.pdf (retrieved 

10 October 2018). 
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Stated objectives of state merit scholarships include increasing access to higher education 

for financially constrained students, improving academic performance, combatting brain drain, 

and incentivizing top-performing high school students to stay in-state (who would otherwise 

potentially attend private or out-of-state institutions).  Arguments in favor of state merit 

scholarships typically claim significant positive externalities.  Proponents contend that higher 

education is made more accessible for low-income households, where educational attainment is 

an effective way to lift families out of poverty.  Further, top talent is retained in-state, ultimately 

benefitting the local economy and positively affecting the learning environment at public 

institutions.  In New Mexico, the impetus for launching the New Mexico Legislative Lottery 

Scholarship (NMLLS) was to encourage high school completion (Ness, 2008). 

Those opposing state merit scholarships argue their lack of a need-based component 

results in routine funding of college for students from relatively wealthy families who would 

attend college in absence of the scholarship.  In states where programs are funded through lottery 

revenues, such as New Mexico, some argue merit scholarships serve as a regressive tax: People 

playing the lottery are often low-income, and their spending subsidizes college for students from 

high-income families.3  Despite their controversial nature, state merit scholarships are a testing 

ground for broader proposals to make college tuition-free in the United States.  According to the 

Education Commission of the States, 36 states considered a total of 131 bills related to free 

                                                        
 
 
 
 
3Binder and Ganderton (2004) find for every low-income student receiving the scholarship at 

UNM, three students from families with relatively high incomes are awarded the scholarship. 

Cornwell and Mustard (2002) provide evidence on the regressivity of Georgia’s Helping Out 

Pupils Educationally (HOPE) scholarship. 
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college from 2014 to 2018.4  Several recent proposals to make higher education tuition-free at 

the federal-level in the United States have been entertained.5 

This study examines the effect of the NMLLS on college completion and course taking 

behavior at the state’s flagship university, the University of New Mexico (UNM).  A qualifying 

semester GPA eligibility cutoff is leveraged to identify treatment effects in a quasi-experimental 

setting.  Because the NMLLS eligibility requires modest academic achievement, local average 

treatment effects (LATE) are estimated for students with below-average academic performance 

in college—a group generally overlooked in the literature.  Robustness of results to various 

falsification tests is examined, as are nonrandom heaping in the running variable and the external 

validity of LATE.  Because of the NMLLS’s unique design, findings inform how students in the 

lower end of the ability distribution respond to generous financial aid tied to modest academic 

requirements. 

The NMLLS is arguably the most broadly-available, low-bar, state merit scholarship to 

be launched in the United States.  Over the study period, the state paid 100 percent of residents’ 

tuition for up to four years provided students earned a high school equivalency in New Mexico, 

enrolled at a public institution in the next regular semester, and earned 12 credits with a 

minimum C+ average in the first semester of college (which was also tuition-free through the 

state’s Bridge to Success scholarship).  Since inception in 1997, the NMLLS has funded 116,531 

                                                        
 
 
 
 
4Education Commission of the States, “Free College and Adult Student Populations,” 

https://www.ecs.org/free-college-and-adult-student-populations/ (retrieved 15 August 2018). 
5In 2015, the Obama administration proposed making the first two years of college tuition-free, 

and multiple 2016 presidential candidates proposed tuition-free college for students below a 

household income cap. 
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recipients with over $785 million in tuition costs.  Of those funded, over 55 percent earned at 

least an associate’s degree at one of 15 participating public institutions in New Mexico.6 

In contrast to other state merit scholarships, eligibility for New Mexico’s program is not 

based on high school, but rather college, performance.  For example, Georgia’s Helping Out 

Pupils Educationally (HOPE) scholarship requires a minimum high school GPA of 3.0.  West 

Virginia’s Providing Real Opportunities to Maximize In-state Student Excellence (PROMISE) 

scholarship requires a 3.0 high school GPA and a 22 composite ACT score.  Florida’s Bright 

Futures scholarship requires a minimum 3.0 high school GPA, 26 composite ACT score, and 75 

hours of community service.  Massachusetts’s Adams Scholarship requires high school students 

be in the top quartile of a state standardized test. 

This paper examines degree completion and course taking behavior using administrative 

data on all first-time, full-time, resident freshmen at UNM.  To preview results, low-achieving 

students respond positively to some merit scholarship program features, including semester-

based funding caps and credit completion-contingent scholarship eligibility.  NMLLS scholars 

are more likely to complete a degree within four or four-and-a-half years, in line with the 

program’s funding cap.  Degree completion at later semesters is unchanged, suggesting a 

reduction in time to degree without any meaningful increase in overall completion rates.  Low-

achieving scholarship recipients earn approximately 16 percent more credits compared to 

nonrecipients. However, because initial eligibility requires completing only 12 credit hours in the 

                                                        
 
 
 
 
6New Mexico Lottery, https://www.nmlottery.com/scholarships.aspx (retrieved 11 October 

2018). 
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qualifying semester, students respond by registering for fewer classes, earning fewer credits, and 

withdrawing from courses more often in order to secure initial scholarship funding.  This 

manipulation appears partial in nature and results in underestimating true completion effects of 

the NMLLS. 

LITERATURE 

Many studies examine state merit scholarships, yet few focus on college outcomes 

beyond enrollment.7  Ideally, in addition to improving access to higher education, state merit 

scholarships increase overall degree completion for attendees, thereby raising the level of 

educational attainment within the state.  As state merit scholarships vary substantially in program 

design, it is not surprising the literature offers mixed evidence.  Several studies employ state-

level data from the U.S. Census Bureau to estimate treatment effects.  Examining Georgia’s 

HOPE scholarship and Arkansas’s Academic Challenge Scholarship, Dynarski (2008) finds a 

2.98 percentage point (15.7 percent) increase in the stock of bachelor’s degrees (or higher) for 

the population exposed to such programs.  In contrast, Sjoquist and Winters (2012) find no 

evidence of increased degree completion using a larger sample and adjusting standard errors 

according to Conley and Taber (2011).  In a follow-up study incorporating American 

Community Survey estimates for years 2001 to 2010, Sjoquist and Winters (2015a) again find no 

evidence of positive completion effects for the 25 states adopting merit scholarships between 

1991 and 2004.  More recently, this line of research has been extended by accounting for 

                                                        
 
 
 
 
7Previous work finds the NMLLS significantly increased college enrollment in New Mexico 

(Binder, Ganderton, and Hutchins, 2002; Binder and Ganderton, 2004). 
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heterogeneity in program features.  Jia (2019) finds that scholarships covering a larger fraction of 

net price (i.e., tuition less aid received) are associated with increased bachelor’s degree 

attainment.  Results suggest analyses assuming homogeneity in state merit scholarships may be 

misleading.  Papers focusing on a single university or state system generally find markedly 

different results compared to papers assuming homogeneity in eligibility rules. 

The earliest study of state merit scholarships and college completion using administrative 

data examines West Virginia’s PROMISE scholarship.  Limiting the sample to residents meeting 

a 3.0 high school GPA requirement, Scott-Clayton (2011) estimates LATE by comparing 

students in the neighborhood of a minimum 22 ACT composite score cutoff.  Robustness of 

results is assessed by estimating difference-in-differences models using variation in policy 

timing and residency classification.  Results suggest PROMISE increased four-year completion 

rates by 9.4 percentage points (58.8 percent), with five-year completion rates increasing by 4.5 

percentage points (12.2 percent) for students just above the ACT cutoff.  Six-year completion 

rates are not reported, but given a substantial drop in LATE from the fourth- to fifth-year, it is 

possible that PROMISE may have decreased time to degree in West Virginia without changing 

overall degree completion at 150 percent of normal time.  A bounding exercise is conducted to 

account for selection bias due to student manipulation of the ACT cutoff score.  Also appealing 

to FRD, Welch (2014) examines completion for community college students funded by 

Tennessee’s HOPE scholarship.  Treatment effects are identified for students just above an ACT 

composite score threshold but below a 3.0 high school GPA threshold (as eligibility is 

determined by meeting at least one of the cutoffs).  The author does not find any evidence of 

HOPE affecting community college students in terms of completing an associate’s or bachelor’s 

degree in Tennessee. 
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Erwin and Binder (2018) use variation in policy timing and residency classification to 

estimate completion effects of the NMLLS using difference-in-differences propensity score 

matching.  The authors do not find any evidence of completion effects in the aggregate, but do 

find divergent effects when disaggregating by student ability and family income.  Estimates 

show less-academically prepared students 11.6 percentage points (38.8 percent) less likely to 

graduate within six years while more-academically prepared students are 10 percentage points 

(17.9 percent) more likely to graduate within the same timeframe, relative to nonrecipients.  

Changes in resident student composition before and after the launch of the NMLLS are central to 

interpreting results—it appears the low-bar nature of the scholarship resulted in additional 

marginally-prepared residents attending the state’s flagship, possibly overmatching and 

completing college at lower rates.  Note there is at least one other study finding a negative 

relationship between merit scholarships and degree completion.  Cohodes and Goodman (2014) 

focus on Massachusetts’s Adams scholarship, concluding that award eligibility results in a 2.5 

percentage point (four percent) decrease in six-year completion rates for students just above a 

standardized test percentile rank cutoff—a result attributed to students’ apparent willingness to 

trade college costs for college quality.  Scholarship recipients tended to forego matriculation at 

elite private institutions for lower-quality, subsidized public institutions. Compositional change 

is a key component to understanding the relationship between broad-based merit scholarships 

and college completion. 

The literature on state merit scholarships also offers clues on how students respond to aid 

in terms of course taking behavior.  Cornwell, Lee, and Mustard (2005) provide an early 

examination of the relationship between state merit scholarship receipt and course taking 

behavior.  The authors use administrative data to study Georgia’s HOPE scholarship, finding that 
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students respond to grade-based retention rules by taking fewer courses and withdrawing from 

courses more often, presumably to maximize the likelihood of scholarship retention.  In contrast, 

Scott-Clayton (2011) finds that West Virginia’s PROMISE resulted in more full-load course 

taking.  Welch (2014) finds that community college students completed approximately three 

(nine percent) more credits by the end of the second year. 

Disagreement in the literature is likely driven by heterogeneous program design. 

Georgia’s HOPE scholarship caps funding based on the amount of credits typically required to 

earn a bachelor’s degree, but does not impose any time limit on the number of semesters students 

can receive funding.  In this case, students likely do not have strong incentives to complete 

college within four or five years.  In contrast, students in West Virginia are limited to four years 

of funding, and appear to respond to state merit aid by completing degrees at significantly higher 

rates within four years.  Tennessee’s  

HOPE scholarship terminates after five years or receipt of a bachelor’s degree, whichever occurs 

first.  The NMLLS is capped at four years after the qualifying semester, for a total of four-and-a-

half years.  As semester funding caps move further away from matriculation, students have 

increasingly weaker incentives to graduate in a timely manner.  This finding is borne out in 

previous studies examining credit completion and state merit scholarships, and is supported by 

results herein. 

This paper contributes to the literature in three principal ways. First, it estimates a novel 

and policy-relevant LATE seldom approached in empirical work—the response of below-

average-ability students to generous financial aid.  Stricter eligibility requirements in other states 
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beget estimates of treatment effects for students with relatively strong academic backgrounds.8  

These students are no doubt better prepared to succeed in college relative to marginally-eligible 

scholarship recipients in New Mexico.  Here, LATE is estimated for compliers in the 

neighborhood of a 2.5 first semester college GPA—C+ students with below-average academic 

performance.  These are below-average students, many of which may not have attended college 

without the scholarship.  Students with weaker academic preparation likely respond differently to 

broad-based merit scholarships compared to those with stronger preparation.  Second, previous 

studies of the NMLLS rely on comparability between resident and nonresident students. Because 

the University of New Mexico is not a popular destination for out-of-state students, it is likely 

that residents and nonresidents vary considerably on non-observable characteristics. Out-of-state 

students are more likely to be on athletic scholarship, for example.  The identification strategy in 

this paper does not rely on comparability between residents and nonresidents.  Third, the unique 

structure of New Mexico’s lottery scholarship allows direct examination of potential cutoff 

manipulation strategies.  Because students are only eligible after a qualifying semester, outcomes 

in this semester are used to assess whether students nonrandomly sort around the cutoff.  This is 

key to interpretation—because GPAs are subject to partial manipulation on behalf of students, 

assessing the possible strategies students employ, and their effectiveness, provides additional 

context to results. 

                                                        
 
 
 
 
8For example, resulting from the multidimensional nature of West Virginia’s eligibility rules, 

LATE in Scott-Clayton’s (2011) sample is estimated for students meeting a 3.0 high school GPA 

and a composite ACT cutoff score of 22. Estimates of Georgia’s HOPE scholarship refer to 

students meeting a minimum 3.0 high school GPA. 
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DATA 

The sample includes the first three NMLLS-eligible cohorts of first-time, full-time, 

resident freshmen at UNM, 1997 to 1999, approximately half of which received scholarship 

funding in their second semester.  Included are information on socio-demographics (age, race-

ethnicity, gender, family income), academic performance in high school (GPA, composite ACT 

scores, indication of remedial coursework required in college), and college academic 

performance by semester (credits earned, college GPA, date of graduation, enrollment by 

semester, and declared major).  Race and ethnicity are referred to collectively as “race-ethnicity” 

since, at the time, UNM recorded Hispanic identification as a race rather than an ethnicity.  For 

example, students in the sample could identify as black or Hispanic, but not both.  Descriptive 

statistics are shown in Table 1.  The sample consists of 3,495 resident students meeting all 

eligibility requirements for the NMLLS except for the 2.5 qualifying semester GPA cutoff—

some surpass the cutoff while others do not. These students are New Mexico residents, recent 

high school graduates, having completed 12 credit hours during the qualifying semester.  Degree 

completion rates are approximately 16 percent within four years and 56 percent within six years.  

Binary completion outcomes are cumulative in nature.  To illustrate, every student graduating 

within four years, by definition, graduates within four-and-a-half, five, and six years as well.  

Average high school GPA for the sample is 3.4.  Residents are 55 percent female, with nearly 

seven percent of all residents required to take remedial mathematics or English at UNM (based 

on standardized test scores).  The university is designated as a Hispanic-Serving Institution with 

nearly one-third of students identifying as such.  Beside family income, student characteristics 

are complete.  Family income is populated only for students completing a Free Application for 

Federal Student Aid (FAFSA)—approximately half of the sample.  It is assumed that non-

FAFSA-filers have family incomes more than $40,000, rendering them ineligible for Federal Pell 
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Grant Program aid.  The 1995-1996 Federal Pell Grant End-of-Year Report shows less than 2.5 

percent of Pell recipients had family income in excess of $40,000.9 

In 2000, UNM launched a program meant to increase persistence for first-time, full-time 

freshmen. Known as the First-Year Learning Communities program, it was primarily a response 

to low retention rates.  Because the program aims to increase retention by providing additional 

training on adjusting to life in college, it could potentially confound the analysis.  It may be 

difficult to parse out effects of the First-Year Learning Communities program from effects of the 

NMLLS.  Erwin and Binder (2018) entertain the idea of an FRD approach using 1997 to 2008 

cohorts, but data fail to pass McCrary’s (2008) test for running variable manipulation.  Upon 

reexamination, strong nonrandom sorting around the eligibility cutoff coincides with the launch 

of the First-Year Learning Communities program, decidedly limiting the sample from 1997 to 

1999.  To the author’s knowledge there are no other concurrent policy changes at the secondary 

or postsecondary level in New Mexico potentially confounding the analysis. 

EMPIRICAL MODEL 

 

Treatment effects are estimated by FRD for resident students earning at least 12 credits in 

the qualifying semester.  Outcomes for complying students just above the 2.5 qualifying 

semester GPA cutoff are compared to students just below.  FRD is an appropriate strategy given 

the probability of receiving NMLLS funding increases significantly at the qualifying semester 

GPA cutoff of 2.5, but not from zero to one.  There are three explanations as to why FRD, and 

                                                        
 
 
 
 
9 U.S. Department of Education, Office of Postsecondary Education, 1996-97 Federal Pell Grant 

Program End-of-Year Report, Table 10-A, https://www2.ed.gov/finaid/prof/resources/data/pell-

historical/pell-eoy-1996-97.pdf (retrieved 18 January 2019). 
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not sharp regression discontinuity, is appropriate.  First, university policies allow exceptions for 

students unable to immediately enroll after receiving a high school credential because of military 

service or an approved medical condition.  Second, in rare cases some students with less than a 

2.5 qualifying semester GPA are approved for an exemption through providing evidence of 

“special circumstances.”  Third, the NMLLS prioritizes other scholarship monies above those 

from the Lottery Scholarship Fund (i.e., the NMLLS is structured as a last-dollar scholarship).  

The probability of treatment is thus not determined entirely by the qualifying semester GPA 

cutoff, c.  Instead, 

(1) 𝑃(𝑤 = 1|𝑥) ≡ 𝐹(𝑥) 

where w equals one under NMLLS scholarship receipt and zero otherwise, x is the qualifying 

semester GPA, and F(x) is a discontinuous function at x = c.  LATE is found by dividing the 

discontinuity in the outcome variable by the discontinuity in the probability of treatment at the 

cutoff.10  Hahn, Todd, and van der Klaauw (2001) show the treatment effect is numerically 

identical to the local instrumental variables estimator where an indication of passing the 

qualifying semester GPA cutoff serves as an instrument for receiving NMLLS funding.  The 

effect of passing the GPA eligibility requirement on NMLLS receipt is identified in the first 

stage equation 

(2) 𝑁𝑀𝐿𝐿𝑆𝑖 = 𝛼0 + 𝛼1𝟏[𝑥𝑖 ≥ 𝑐] + 𝛼2(𝑥𝑖 − 𝑐) + 𝛼3(𝑥𝑖 − 𝑐) ∗ 𝟏[𝑥𝑖 ≥ 𝑐] + 𝑿𝜽 + 𝑣𝑖 

where 𝑁𝑀𝐿𝐿𝑆𝑖 is equal to one if student i receives lottery scholarship funding in the first eligible 

semester, and zero otherwise.  X contains a vector of control variables, including race-ethnicity, 

                                                        
 
 
 
 
10See Imbens and Lemieux (2008) for an introduction to FRD design. 
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gender, high school GPA, ACT composite scores, family income, and an indication of whether 

the student was required to take remedial coursework in college.  The second stage takes the 

form 

(3) 𝑌𝑖 = 𝛽0 + 𝜏𝐹𝑅𝐷𝑁𝑀𝐿𝐿𝑆𝑖
̂ + 𝛽1(𝑥𝑖 − 𝑐) + 𝛽2(𝑥𝑖 − 𝑐) ∗ 𝟏[𝑥𝑖 ≥ 𝑐] + 𝑿𝜞 + 𝜀𝑖 

where 𝑌𝑖 is an outcome and 𝜏𝐹𝑅𝐷 is the LATE of the NMLLS.  Outcomes include degree 

completion, credits earned, and course withdrawals at different points in time.  One common 

mean squared error (MSE)-optimal bandwidths, h, are found following Calonico et al. (2017, 

2018).  Data-driven approaches avoid selecting arbitrary bandwidths which may be subject to 

bias.  Robustness to alternative data-driven bandwidths is reported in the online appendix.11  

Local linear regression is estimated in the neighborhood of the GPA cutoff, [𝑐 − ℎ < 𝑥𝑖 < 𝑐 +

ℎ], as is the recommended practice in empirical applications (Cattaneo, Titiunik, and Vazquez-

Bare, 2017; Gelman and Imbens, 2018).  The use of higher-order polynomials is useful for visual 

and empirical checks of running variable manipulation, but may be biased in local regression 

resulting from erratic behavior at the endpoints of fitted curves.  There is a bias-variance trade-

off at work: Because higher-order polynomials are more flexible and incorporate more data 

points, variance decreases at the cost of increased bias from over-fitting the curve.  Robust bias-

corrected confidence intervals are reported following Calonico, Cattaneo, and Titiunik (2014).  

Standard errors are clustered at the cohort-level. 

Nonrandom Heaping in the Qualifying Semester GPA 

                                                        
 
 
 
 
11All appendices are available at the end of the article as it appears in JPAM online.  Go to the 

publisher’s website and use the search engine to locate the article at 

http://onlinelibrary.wiley.com. 



15 
 

Two identifying assumptions of FRD warrant discussion.  First, identification requires 

qualifying semester GPAs vary smoothly around the 2.5 cutoff in the absence of the NMLLS.  

This assumption deserves scrutiny as GPAs are discrete, with certain GPAs more common than 

others.  Heaping in college grades may occur for various reasons—institution policies, the 

curving or centering of grades, instructor distaste for assigning plus or minus grades (e.g., A+, B-

), or the proclivity of instructors to help out persistent students just below letter-grade cutoffs 

with generous, sometimes creative, rounding policies.  Barreca, Lindo, and Waddell (2016) show 

that LATE is biased in the presence of heaping, even when heaping occurs far away from the 

cutoff.  Figure 1 presents a visual check for nonrandom heaping in the running variable.  The 

histogram of qualifying semester GPA (centered at zero) shows a major spike at one-half, with 

several other spikes occurring at multiples of one-third and one-fourth, dampening toward tails 

of the distribution.  The distribution is not dominated by the zero area, although a spike is 

observed there.  Instead, the distribution shows the most significant mass in the one-half region. 

Barreca, Lindo, and Waddell (2016) recommend two strategies to address nonrandom 

heaping, each having their own advantages and limitations.  The first method pools heaped and 

non-heaped students, flexibly controlling for heaping by allowing different intercepts and slopes 

for each group.  Suppose Hi equals one when the qualifying semester GPA is a multiple of one-

third or one-fourth, and zero otherwise. Adding separate intercepts and slopes for heaped 

students augments equations (2) and (3) such that the first stage becomes 

(4) 𝑁𝑀𝐿𝐿𝑆𝑖 = 𝛾0 + 𝛾1𝐻𝑖 + 𝛾2𝟏[𝑥𝑖 ≥ 𝑐] + 𝛾3(𝑥𝑖 − 𝑐) + 𝛾4𝐻𝑖 ∗ (𝑥𝑖 − 𝑐) + 𝛾5(𝑥𝑖 − 𝑐) ∗

𝟏[𝑥𝑖 ≥ 𝑐] + 𝑿𝜳 + 𝜑𝑖 

and the second stage becomes 
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(5) 𝑌𝑖 = 𝛿0 + 𝛿1𝐻𝑖 + 𝜏𝐹𝑅𝐷𝑁𝑀𝐿𝐿𝑆𝑖
̂ + 𝛿2(𝑥𝑖 − 𝑐) + 𝛿3𝐻𝑖 ∗ (𝑥𝑖 − 𝑐) + 𝛿4(𝑥𝑖 − 𝑐) ∗

𝟏[𝑥𝑖 ≥ 𝑐] + 𝑿𝜱 + 𝜔𝑖. 

The advantage of flexibly controlling for nonrandom heaping is that no observations are lost, and 

results are potentially less-biased.  However, this strategy is limited in the sense that it does not 

remove all bias from nonrandom heaping.  The second strategy estimates treatment effects 

separately for heaped and non-heaped students.  The advantage of this strategy is that it provides 

unbiased estimates for each group.  Unfortunately, splitting the sample in this way often leads to 

an insufficient number of observations within MSE-optimal bandwidths of the cutoff.  Heaped 

students in the UNM data comprise 842 out of 3,495 (24 percent) of observations, so this 

strategy often yields estimates of LATE only for non-heaped students.  Results from both 

strategies are reported. Because it provides unbiased estimates, removing heaped students from 

the sample is the preferred approach. 

Manipulation of the Qualifying Semester GPA Cutoff 

The second identifying assumption requires qualifying semester GPAs not respond to 

treatment.  In other words, students cannot “game” the GPA cutoff to secure favorable treatment.  

Since eligibility rules are known to students, and differences in direct college costs vary 

considerably on either side of the cutoff, this assumption is difficult to maintain.  Knowledge of 

the cutoff may be correlated with performance in college, which would bias results in an unclear 

direction.  Consider low-performing students which would have earned first semester GPAs 

under 2.5 in the absence of the NMLLS.  Assume students prefer to receive NMLLS funding, 

and there are two ways of securing it: either by increasing effort or by taking a lighter course 

load.  Students that increase effort may be more immersed in the college experience and more 

motivated than others.  If these motivated students surpass the qualifying semester GPA cutoff, 
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then degree completion rates above the cutoff will be higher than they would in the absence of 

the scholarship, and estimates are biased upward.  Students choosing to instead take a lighter 

course load may be less immersed in the college experience and less motivated compared to 

others.  If these less motivated students surpass the qualifying semester GPA cutoff, then degree 

completion rates above the cutoff will be lower than they would in the absence of the 

scholarship, and estimates are biased downward.12 

McCrary (2008) offers a formal yet intuitive test of running variable manipulation.  If 

students are able ensure a favorable outcome by manipulating the qualifying semester GPA 

around the known cutoff of 2.5, then there should exist an excess mass of students just above the 

cutoff.  McCrary’s test is informative only when manipulation is monotonic—that is, occurring 

only in one direction.  Monotonic and partial manipulation can be expected, as qualifying 

semester GPAs are only conceivably manipulated upwards in order to secure funding, and 

students do not have full control over their grades.  Lee (2008) demonstrates that partial 

manipulation generally does not threaten identification, and in such cases LATE are recovered 

without difficulty.13  Importantly, if students are only able to partially manipulate qualifying 

semester GPAs, so there remains a substantial stochastic component determining the qualifying 

semester GPA, then McCrary’s test will not find a failure of identification.  In the case of the 

                                                        
 
 
 
 
12Carruthers and Özek (2016) make the same argument in the context of Tennessee’s HOPE 

scholarship. 
13See McCrary (2008) for additional discussion of treatment effects under partial manipulation of 

the running variable. 
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NMLLS, low-performing students near the cutoff may have little control over their grades, even 

if taking a lighter course load or easier courses. 

Figure 2 presents a visual representation of McCrary’s (2008) test using local polynomial 

density estimation methods developed by Cattaneo, Jansson, and Ma (2018)—methods shown to 

have improved size and power compared to other tests of density continuity.  Quadratic curves 

are fit on each side of the 2.5 qualifying semester cutoff with ninety-five percent confidence 

intervals shown in gray.  One is not able to reject the null hypothesis of continuity in the running 

variable around the 2.5 cutoff, evidence that qualifying semester GPAs are not systematically 

manipulated by students (or are, but only partially so).  Appendix A, available online, presents 

empirical results of manipulation tests under various conditions for 1997 to 1999 cohorts.14 

Another standard practice in testing for nonrandom sorting is to use predetermined 

covariates as outcomes.  Because it is known a priori there cannot be any effect of the policy 

change on such variables, tests are considered a check for placebo treatment effects.  The 

presence of discontinuities in predetermined covariates may be informative about student sorting 

around the cutoff.  In our case, the unique structure of the NMLLS affords the researcher to also 

examine qualifying semester outcomes, thereby directly testing whether students adopt certain 

common strategies to manipulate GPAs, such as reducing course loads or increasing course 

withdrawal in the qualifying semester.  As mentioned above, the literature on state merit aid 

provides several examples of students modifying their behavior to increase the likelihood of aid 

                                                        
 
 
 
 
14All appendices are available at the end of the article as it appears in JPAM online.  Go to the 

publisher’s website and use the search engine to locate the article at 

http://onlinelibrary.wiley.com. 
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receipt.15  Table 2 presents results of FRD models using qualifying semester course taking 

outcomes.  Results show that students just above the GPA cutoff register for .69 (4.8 percent) 

fewer credits, earn 1.15 (8.4 percent) fewer credits, and withdraw .23 (40.5 percent) more credits 

in the qualifying semester relative to students just below the cutoff.  Estimates are presented 

graphically in Appendix B.16  These findings may be explained by two different strategies to 

manipulate the cutoff.  The first strategy is simply registering for a smaller course load (e.g., 12 

credits) as it is easier to manage, and more time may be devoted to each course.  Another 

strategy is enrolling in a full course load (e.g., 15 credits) and withdrawing from courses with 

expected grades which put one in jeopardy of not meeting the 2.5 GPA eligibility cutoff.  

Students likely participated in both of these strategies.  Because only low-ability students need to 

game a relatively low qualifying semester GPA requirement, estimates of LATE are likely biased 

downward. Accordingly, main findings are cautiously presented as lower bounds of the true 

treatment effects of the NMLLS.  

Another falsification test inspects for treatment effects around false cutoffs in the 

qualifying semester GPAs of 2.3 and 2.7.  This provides a check for discontinuities in other 

                                                        
 
 
 
 
15Cornwell, Lee, and Mustard (2005) find evidence that students in Georgia respond to the 

HOPE scholarship with lighter course loads and increased withdrawals.  In a follow-up paper, 

Cornwell, Lee, and Mustard (2008) find that HOPE induced more students to major in education.  

Sjoquist and Winters (2015b) find that state merit scholarships result in lower production of 

degrees in science, technology, engineering, and mathematics.  Of course, students may also 

manipulate the GPA cutoff by taking easier courses or pursuing easier majors, but data do not 

contain information needed to test for these responses. 
16All appendices are available at the end of the article as it appears in JPAM online.  Go to the 

publisher’s website and use the search engine to locate the article at 

http://onlinelibrary.wiley.com. 
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regions of the running variable distribution.  For proper identification, there should be no 

discontinuities in outcomes other than those at the cutoff value.  Results of models using false 

cutoffs are not statistically significant, and are presented in Appendix C.17 

RESULTS 

Figure 3 plots the first stage of the FRD model; the likelihood of receiving NMLLS 

funding given a qualifying semester GPA.  Linear fitted lines are shown on each side of the 2.5 

qualifying semester GPA cutoff, which is centered at zero.  Points depict within-bin means of 

NMLLS receipt, which are evenly spaced, where the number of bins is chosen to approximate 

the unknown regression function (see Calonico, Cattaneo, and Titiunik, 2015 for details).  Other 

regression discontinuity plots use similar conventions for comparability.  Visually, the likelihood 

of receiving NMLLS jumps by approximately 70 percentage points at the cutoff.  Note the fuzzy 

nature of the discontinuity: Some students slightly below the cutoff are awarded funding while 

many above the cutoff are not.  Figure 4 to Figure 6 present regression discontinuity plots.  

Graphs hint heuristically to potentially meaningful LATE of the NMLLS.  Figure 4 shows jumps 

in graduation rates around the cutoff at four and four-and-a-half years.  There is little graphical 

support for a completion effect at the five- or six-year mark.  Plots in Figure 5 and Figure 6 are 

quite noisy.  

Empirical estimates of degree completion are presented in Table 3.  The first column 

offers estimates pooling heaped and non-heaped students, which for reasons mentioned in the 

                                                        
 
 
 
 
17All appendices are available at the end of the article as it appears in JPAM online.  Go to the 

publisher’s website and use the search engine to locate the article at 

http://onlinelibrary.wiley.com. 
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previous section, are likely biased.  The second column again pools heaped and non-heaped 

students, but allows for different slopes and intercepts for each group.  These estimates are 

strikingly similar to those not controlling for heaped observations.  The preferred specification is 

presented in column (3), where local linear regression is used to construct point estimates for 

non-heaped students with qualifying semester GPAs not multiples of one-third or one-fourth.  

The number of effective observations below the cutoff is denoted as 𝑁𝑤
−, while effective 

observations above the cutoff is denoted as 𝑁𝑤
+.  One common MSE-optimal bandwidths are 

denoted as ℎ.  The triangular kernel function is used to construct polynomial estimators, as it is 

shown to be optimal for estimating conditional means at boundary points (Fan and Gijbels, 

1996).  First-stage results suggest that exceeding the 2.5 qualifying semester GPA increases the 

likelihood of receiving NMLLS funding by approximately 68 percent.  In the second stage, the 

NMLLS is found to increase degree completion within four years for non-heaped students by 

10.8 percentage points (65.9 percent).  The NMLLS is shown to increase degree completion 

within four-and-a-half years by 14.1 percentage points (49 percent) for non-heaped students just 

above the qualifying semester GPA cutoff.  Because the NMLLS funds a maximum of four years 

after the student’s qualifying semester, for a total of four-and-a-half years, it is not surprising that 

completion effects are lumped at the four and four-and-a-half year marks.  Completion effects 

are noisily estimated at later periods, evidence the lottery scholarship shortened time to degree 

while not having any overall effect on six-year graduation rates. 

 Course taking behavior is examined to better understand the mechanism behind college 

completion.  If scholarship recipients are more likely to graduate within four-and-a-half years, 

then we may observe a higher level of credits attained within that timeframe relative to students 

that did not receive NMLLS funding.  Yet, this may not be evident for various reasons.  College 
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credits may be classified into two categories: excess credits, which do not count towards the 

student’s degree, and efficient credits, which count toward the degree.  Many students 

accumulate excess credits through academic exploration or poor academic advising.  Increased 

graduation at four- and four-and-a-half years, by definition, means more students accumulating 

120 efficient credit hours within four and four-and-a-half years.  While the sample does not 

distinguish between excess and efficient credits, pure substitution of excess credits for efficient 

credits would be marked by no change in overall credit completion coupled with a decrease in 

time to degree.  Table 4 offers evidence of this response.  The preferred specification in column 

(3) offers no evidence of any effect on credit accumulation over time, supporting the notion that 

scholarship recipients took more efficient paths to degree completion.  No change in overall 

credit accumulation may also be explained by a different response: students responding to 12-

credit per semester eligibility rule by registering for more classes at the start of semesters, then 

subsequently dropping courses where a poor grade may jeopardize scholarship renewal.  To test 

whether students respond in this manner, the total number of credits withdrawn is examined as 

another secondary outcome.  Results of credit withdrawal models are presented in Table 5.  None 

of the specifications provide evidence of students responding to the NMLLS by withdrawing 

from courses more frequently in order to maintain scholarship eligibility.  Instead, Table 3 

through Table 5 support students responding to the lottery scholarship by decreasing time to 

degree and substituting away from excess credits in favor of efficient credits, with little 

discernable impact on course withdrawal. 
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Appendix D presents estimates using three other data-driven bandwidths as discussed in 

Calonico et al. (2017).18  The first two columns present MSE-optimal bandwidths, while the last 

two columns present coverage error rate (CER)-optimal bandwidths.  Estimates are shown for 

one common bandwidth as well as for different bandwidths on either side of the cutoff.  Results 

are not sensitive to the choice of optimal bandwidth. 

EXTERNAL VALIDITY 

Recent methodological developments in regression discontinuity focus on the external 

validity of LATE.  Dong and Lewbel (2015) and Cerruli et al. (2017) present treatment effect 

derivatives (TED) and complier probability derivatives (CPD) as measures used to assess the 

stability of estimates.  A TED significantly different from zero suggests treatment effects are 

likely different given small changes in the cutoff value.  In the case of FRD, a nonzero CPD also 

provides evidence of instability, as small changes in the cutoff value result in significant changes 

in the population of compliers.  Both TED and CPD can also be used to extrapolate treatment 

effects to other (nearby) areas of the running variable distribution under the assumption of local 

policy invariance.  These measures provide insight into how LATE may change given a 

marginal increase or decrease in the eligibility cutoff value even though no such change is 

observed. Cerulli et al. (2017) offer guidelines for interpreting relative TED and relative CPD: 

External validity of LATE is threated when TED is nonzero and relative TED (LATE divided by 

the product of the bandwidth and the TED) is less than one or two.  Similarly, instability in the 

                                                        
 
 
 
 
18All appendices are available at the end of the article as it appears in JPAM online.  Go to the 

publisher’s website and use the search engine to locate the article at 

http://onlinelibrary.wiley.com. 



24 
 

FRD context is indicated by a nonzero CPD and relative CPD (first stage jump in treatment 

probability divided by the product of the bandwidth and CPD) less than one. 

Appendix E, available online, offers detailed results of tests for external validity.  TED 

and CPD are small and indistinguishable from zero, suggesting those with qualifying semester 

GPAs near 2.5 can be expected to experience treatment effects similar in magnitude.  

Extrapolation to other areas of the running variable distribution is possible when TED equals the 

marginal threshold treatment effect, which is true only when local policy invariance holds.  

Local policy invariance requires that one’s expected outcomes do not change if the cutoff 

marginally changed for all other compliers.  Because of general equilibrium effects, the 

assumption is not likely to hold for the NMLLS.  For example, if the qualifying semester GPA 

cutoff was lowered, enrollment would likely increase, resulting in less individual attention from 

instructors or academic advisors, and decreased completion rates.  Because TED and CPD are 

not statistically different from zero in our case, extrapolating LATE away from the cutoff is not 

insightful—LATE is expected to be similar in magnitude for other cutoff values of the 

qualifying semester GPA. 

SELECTION BIAS FROM CUTOFF MANIPULATION 

 
As discussed in the empirical model section, falsification tests find that some low-

achieving students successfully manipulate the qualifying semester GPA cutoff by taking fewer 

credits or strategically dropping courses.  Because such students are likely lower-ability, or 

perhaps less motivated or engaged in college, successful manipulators have the potential to lower 

average academic achievement for scholarship recipients, resulting in underestimating the true 

effect of the NMLLS on college and credit completion.  This argument motivates conducting a 

bounding exercise removing suspected manipulators from the analysis.  Due to the unique 
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structure of the NMLLS, where data allow the researcher to partially observe potential 

manipulation strategies, a very simple method which excludes suspected manipulators is 

adopted.  I make the extreme assumption that every scholarship recipient with a qualifying 

semester GPA above, but near, the 2.5 cutoff who either registers for the minimum number of 

credit hours for initial eligibility, or drops a course after registering for 15 credit hours in the 

qualifying semester, is a manipulator.  I define manipulators over two different ranges of 

qualifying semester GPA: those meeting the 2.5 cutoff but not above 2.75, and those meeting the 

2.5 cutoff but not above three.  Depending on the definition, removal of suspected manipulators 

further trims the sample from 2,653 to 2,578 or 2,481, decreases of approximately three and six 

percent, respectively.  This strategy has the advantage of being far simpler than previous studies 

trimming the sample to address nonrandom selection in regression discontinuity designs (Lee, 

2009; Scott-Clayton, 2011; Gerard, Rokkanen, Roth, 2018).  A notable limitation of this strategy 

is that only one source of potential manipulation is investigated—other strategies, including 

taking easier courses or pursuing easier majors, are not observed. 

Table 6 presents results of the bounding exercise for completion outcomes.  As predicted, 

removing lower-achieving, less motivated manipulators significantly increases estimated 

treatment effects of the NMLLS.  The estimated four-year completion effect increases 

appreciably from 10.8 percentage points (65.9 percent) in column (1) to 17.2 percentage points 

(97.7 percent) in column (2). The four-and-a-half-year completion effect is nearly unchanged, 

falling slightly from 14.2 percentage points (49.3 percent) to 13.6 percentage points (45.2 

percent).  Completion effects at later points remain not statistically different from zero, again 

supporting the notion that the NMLLS reduces time to degree while having no overall impact on 

degree completion.  When using the broader definition of manipulation in column (3), the 
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completion effect at four years is 15.3 percentage points (84.5 percent) and completion at four-

and-a-half years is not statistically different from zero.  Table 7 presents results of the bounding 

exercise for credit completion outcomes.  Estimates at the three-year mark and later are now all 

statistically significant using either definition of manipulation.  Low-achieving scholarship 

recipients earn 16.2 more credits (22.7 percent) compared to nonrecipients after three years at 

UNM.  Estimates at later periods are similar in magnitude and statistically significant.  Table 8 

shows that, as with main results in column (1), low-achieving students did not withdraw from 

courses more often than nonrecipients. 

CONCLUSIONS 

Leveraging a discontinuity in eligibility rules, this paper examines how low-achieving 

students respond to low-bar state merit scholarships.  Tests for pseudo treatment effects reveal 

that scholarship recipients registered for fewer credits, earned fewer credits, and withdrew from 

more classes in the qualifying semester, presumably to increase the likelihood of scholarship 

receipt.  Formal tests of manipulation in the qualifying semester GPA cutoff are favorable, 

suggesting that low-achieving college students are only able to partially manipulate grades.  

Heaping in the qualifying semester GPA is addressed by removing students with GPAs that are 

multiples of one-third or one-fourth.  First stage results show that qualifying semester GPA is 

highly predictive of receiving NMLLS funding.  Second stage results find that overall 

completion rates are not affected, though students respond to scholarship eligibility caps by 

reducing time to degree. Abounding exercise is conducted which aims to purge the sample of 

students that observably manipulated the qualifying semester GPA cutoff.  In such models, there 

is evidence that the NMLLS results in increased credit attainment beginning at the end of the 

third year.  An increase in credits earned paired with shorter time to degree implies students 

respond to merit scholarship eligibility requirements by embarking on more efficient paths to 
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degree completion.  Tests for the external validity of LATE find that treatment effects for those 

near the discontinuity are similar to those at the discontinuity. 

Results largely agree with previous work using administrative data to study the 

relationship between state merit aid and college completion.  Existing literature finds that state 

merit scholarships affect how students graduate, not necessarily if they graduate.  Program 

features determine how students respond, and programs across states are very different.  Like 

Scott-Clayton (2011) and Welch (2014), I find NMLLS recipients earned significantly more 

credits than nonrecipients.  Like Cornwell, Lee, and Mustard (2005), I find that students take 

fewer courses and withdraw from courses more often in order to ensure scholarship eligibility, 

although this behavior only occurs during the qualifying semester.  Results are also in-line with 

Garibaldi et al. (2012), who show that students reduce time to degree when faced with increasing 

costs of persistence beyond normal time.  Since the NMLLS provides funding for a maximum of 

four-and-a-half years, students face substantially higher costs starting in the fifth year, which 

prompts students to finish earlier.  Overall, results show that even marginally prepared students 

respond favorably to generous financial aid. 

The NMLLS has seen significant changes since its launch in 1997.  In the 2014-2015 

academic year the scholarship was capped at eight semesters in total (including the qualifying 

semester).  Eligibility requirements were increased to 15 credits earned per semester.  More 

recently, a 2017 budget crisis reduced funding to approximately 60 percent of tuition and it is 

unclear whether full funding will be restored in the future.  The 2017 Regular Session resulted in 

the passage of SB 420.  Now signed into law, legislation allows students to take a “gap” year 

after high school and still remain eligible for the NMLLS.  In other words, New Mexico’s 

program does not at all operate as it did for 1997 to 1999 cohorts.  It is unclear how recent 
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changes will impact student achievement, but changes are likely to increase program costs.  

Consequently, raising the qualifying semester GPA cutoff is worth considering, as it would limit 

the program scope and improve the financial health of the Lottery Scholarship Fund.  Tests for 

external validity suggest a small increase in the eligibility cut off could be instituted without 

sacrificing the benefits of shorter time to degree and more efficient course taking. 

REFERENCES 

 

Barreca, A. I., Lindo, J. M., & Waddell, G. R.  (2016).  Heaping-Induced bias in regression-

discontinuity designs.  Economic Inquiry, 54, 268—293. 

Bell, E., Wehde, W., & Stucky, M.  (2018).  Supplement or supplant? Estimating the impact of 

state lottery earmarks on higher education funding.  Education Finance and Policy, 1—

64. 

Binder, M., Ganderton, P. T., and Hutchens, K.  2002.  Incentive effects of New Mexico’s merit-

based state scholarship program: Who responds and how?  In Who should we help?  The 

negative social consequences of merit scholarships, edited by Donald. E. Heller and 

Patricia Marin, pp. 41—56.  Cambridge, MA: The Civil Rights Project, Harvard 

University. 

Binder, M., & Ganderton, P.T. 2004.  The New Mexico lottery scholarship: Does it help minority 

and low-income students?  In State merit scholarships and racial inequality, edited by 

Donald E. Heller and Patricia Marin, pp. 101—122. Cambridge, MA: The Civil Rights 

Project, Harvard University. 

Calonico, S., Cattaneo, M. D., Farrell, M. H., & Titiunik, R.  (2017).  rdrobust: software for 

regression discontinuity designs.  Stata Journal, 17, 372—404. 



29 
 

_______.  (2018).  Regression discontinuity designs using covariates.  Review of Economics and 

Statistics, 1—30. 

Calonico, S., Cattaneo, M. D., & Titiunik, R.  (2014).  Robust nonparametric confidence 

intervals for regression-discontinuity designs.  Econometrica, 82, 2295—2326. 

Calonico, S., Cattaneo, M. D., & Titiunik, R. (2015).  Optimal data-driven regression 

discontinuity plots.  Journal of the American Statistical Association, 110, 1753—1769. 

Carruthers, C. K., & Özek, U.  (2016).  Losing HOPE: Financial aid and the line between college 

and work.  Economics of Education Review, 53, 1—15. 

Cattaneo, M. D., Jansson, M., & Ma, X.  (2018).  Manipulation testing based on density 

discontinuity.  The Stata Journal, 18, 234—261. 

Cattaneo, M. D., Titiunik, R., & Vazquez-Bare, G.  (2017).  Comparing inference approaches for 

RD designs: A reexamination of the effect of head start on child mortality.  Journal of 

Policy Analysis and Management, 36, 643—681. 

Cerulli, G., Dong, Y., Lewbel, A., & Poulsen, A.  (2017).  Testing stability of regression 

discontinuity models.  In Regression Discontinuity Designs: Theory and Applications 

(pp. 317—339).  Bingley, United Kingdom: Emerald Publishing Limited. 

Cohodes, S. R., & Goodman, J. S.  (2014).  Merit aid, college quality, and college completion: 

Massachusetts' Adams scholarship as an in-kind subsidy.  American Economic Journal: 

Applied Economics, 6, 251—285. 

Conley, T. G., & Taber, C. R.  (2011).  Inference with “difference in differences” with a small 

number of policy changes.  The Review of Economics and Statistics, 93, 113—125. 



30 
 

Cornwell, C. M., & Mustard, D. B.  (2002).  Race and the effects of Georgia's HOPE 

scholarship.  In Who Should We Help?  The Negative Social Consequences of Merit 

Scholarships, 57—72. 

Cornwell, C. M., Lee, K. H., & Mustard, D. B.  (2005).  Student responses to merit scholarship 

retention rules.  Journal of Human Resources, 40, 895—917. 

_______.  (2008). The effects of state-sponsored merit scholarships on course selection and 

major choice in college. Working paper, University of Georgia, Athens. 

DesJardins, S. L., Ahlburg, D. A., & McCall, B. P.  (2002).  A temporal investigation of factors 

related to timely degree completion.  The Journal of Higher Education, 73, 555—581. 

Dong, Y., & Lewbel, A.  (2015).  Identifying the effect of changing the policy threshold in 

regression discontinuity models.  Review of Economics and Statistics, 97, 1081—1092. 

Dynarski, S.  (2008).  Building the stock of college-educated labor.  Journal of Human 

Resources, 43, 576—610. 

Erwin, C. P., & Binder, M.  (2018).  Does broad-based merit aid improve college completion?  

Evidence from New Mexico’s lottery scholarship.  Education Finance and Policy, 1—77. 

Fan, J., & Gijbels, I.  (1996).  Local polynomial regression and its applications.  London: 

Chapman and Hall. 

Garibaldi, P., Giavazzi, F., Ichino, A., & Rettore, E. (2012). College cost and time to complete a 

degree: Evidence from tuition discontinuities. Review of Economics and Statistics, 94, 

699—711. 

Gelman, A., & Imbens, G.  (2018).  Why high-order polynomials should not be used in 

regression discontinuity designs.  Journal of Business & Economic Statistics, 1—10. 



31 
 

Gerard, F., M. Rokkanen, & C. Rothe. (2018) Bounds on treatment effects in regression 

discontinuity designs with a manipulated running variable. February 2018 version. NBER 

Working Paper 22892. 

Hahn, J., Todd, P., & van der Klaauw, W.  (2001).  Identification and estimation of treatment 

effects with a regression-discontinuity design.  Econometrica, 69, 201—209. 

Imbens G. W., & Lemieux, T.  (2008).  Regression discontinuity designs: a guide to practice.  

Journal of Econometrics, 142: 615—635. 

Jia, N. (2019). Heterogeneous effects of merit scholarships: do program features matter? Applied 

Economics, 1—17. 

Lee, D. S. (2008). Randomized experiments from non-random selection in U.S. House elections. 

Journal of Econometrics, 142, 675—697. 

_______. (2009). Training, wages, and sample selection: Estimating sharp bounds on treatment 

effects. The Review of Economic Studies, 76, 1071—1102. 

McCrary, J.  (2008).  Manipulation of the running variable in the regression discontinuity design: 

A density test.  Journal of Econometrics, 142, 698—714. 

Ness, E. C.  (2008).  Merit aid and the politics of education.  In P. G. Altbach (Ed.), Studies in 

higher education.  New York, NY: Routledge Press. 

Scott-Clayton, J.  (2011).  On money and motivation a quasi-experimental analysis of financial 

incentives for college achievement.  Journal of Human Resources, 46, 614—646. 

Sjoquist, D. L., & Winters, J. V.  (2012).  Building the stock of college-educated labor revisited.  

Journal of Human Resources, 47, 270—285. 

_______.  (2015a).  State merit-based financial aid programs and college attainment.  Journal of 

Regional Science, 55, 364—390. 



32 
 

_______.  (2015b). State merit aid programs and college major: A focus on STEM. Journal of 

Labor Economics, 33, 973—1006. 

Van der Klaauw, W. (2002). Estimating the effect of financial aid offers on college enrollment: 

A regression–discontinuity approach. International Economic Review, 43, 1249—1287. 

Welch, J. G.  (2014).  HOPE for community college students: The impact of merit aid on 

persistence, graduation, and earnings.  Economics of Education Review, 43, 1—20.  



33 
 

 
Note: histogram bin widths are .01, as qualifying GPAs are 

rounded to the nearest hundredth.  The running variable is centered 

at zero. 

 

Figure 1.  Histogram of Qualifying Semester GPA 

 

 

 

 
Note: common MSE-optimal data-driven bandwidths are used.  A 

quadratic is fit on each side of the GPA cutoff, which is centered at 

zero.  Ninety-five percent confidence intervals are shown in gray.  

The triangular kernel is used to construct local polynomial 

estimators. 

 

Figure 2.  Visual Presentation of McCrary’s (2008) Test for Running Variable Manipulation 
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Note: points depict the within-bin sample average of NMLLS receipt probability 

by qualifying semester GPA.  A linear fit has been added below and above the 

cutoff.  Binned means of qualifying semester GPA with evenly spaced bins are 

chosen optimally to approximate the underlying unknown regression function.  

The triangular kernel function is used to construct global polynomial estimators. 

 

Figure 3.  Jump in Treatment Probability Around the Qualifying Semester GPA 

Cutoff, 1997 to 1999 cohorts 
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Note: observations nonrandomly heaped at multiples of one-half and one-third have been 

removed.  Binned means of qualifying semester GPA with evenly spaced bins are chosen 

optimally to approximate the underlying unknown regression function.  A linear fit has 

been added below and above the cutoff centered at zero.  The triangular kernel is used to 

construct the global polynomial estimators. 

 

Figure 4.  Visual Presentation of LATE, College Completion, 1997 to 1999 
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Note: observations nonrandomly heaped at multiples of one-half and one-third have been 

removed.  Binned means of qualifying semester GPA with evenly spaced bins are chosen 

optimally to approximate the underlying unknown regression function.  A linear fit has 

been added below and above the cutoff centered at zero.  The triangular kernel is used to 

construct the global polynomial estimators. 

 

Figure 5.  Visual Presentation of LATE, Credit Accumulation, 1997 to 1999 
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Note: observations nonrandomly heaped at multiples of one-half and one-third have been 

removed.  Binned means of qualifying semester GPA with evenly spaced bins are chosen 

optimally to approximate the underlying unknown regression function.  A linear fit has been 

added below and above the cutoff centered at zero.  The triangular kernel is used to construct the 

global polynomial estimators. 

 

Figure 6.  Visual Presentation of LATE, Course Withdrawals, 1997 to 1999 
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Table 1.  Descriptive statistics, 1997 to 1999 cohorts 

 
   
qualifying semester credits:   

registered 14.192 (1.674)  
earned 13.771 (1.763)  
withdrawn .570 (1.215)  

   
bachelor’s degree within (years):   

4 .164  
4.5 .288  
5 .460  
6 .559  

   
credits earned within (years):   

1 27.049 (4.122)  
2 50.069 (13.799)  
3 70.403 (24.582)  
4 89.592 (36.051)  
5 101.312 (42.211)  
6 106.507 (44.797)  

   
credits withdrawn within (years):   

1 1.857 (2.622)  
2 3.757 (4.253)  
3 5.387 (6.626)  
4 7.080 (7.033)  
5 8.226 (8.154)  
6 9.761 (9.534)  

   
female .553  
high school GPA 3.435 (.450)  
composite ACT 24.007 (3.240)  
required remedial coursework .066  
family income < $40,000 .176  
family income < $20,000 .078  
   
white .576  
Hispanic .319  
Asian .040  
American Indian .034  
black .017  
declined to state race-ethnicity .014  
   
observations 3,495  
   

Source: Freshmen Tracking System, Office of Institutional 

Analytics, University of New Mexico.  Standard deviations are in 

parentheses. 
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Table 2.  Tests for placebo treatment effects 
 

Outcome    Outcome   

       

qualifying semester credits registered  -.685*  family income < $20,000  .016 

standard error  .369  standard error  .048 

𝑁𝑊
− |𝑁𝑊

+   416 | 811  𝑁𝑊
− |𝑁𝑊

+   358 | 674 

ℎ  .484  ℎ  .406 

       

qualifying semester credits earned  -1.151***  female  -.022 

standard error  .438  standard error  .083 

𝑁𝑊
− |𝑁𝑊

+   414 | 809  𝑁𝑊
− |𝑁𝑊

+   416 | 811 

ℎ  .451  ℎ  .474 

       

qualifying semester credits withdrawn  .231*  Hispanic  -.078 

standard error  .119  standard error  .088 

𝑁𝑊
− |𝑁𝑊

+   528 | 1181  𝑁𝑊
− |𝑁𝑊

+   354 | 660 

ℎ  .668  ℎ  .375 

       

high school GPA  -.100  black  .021 

standard error  .126  standard error  .054 

𝑁𝑊
− |𝑁𝑊

+   467 | 944  𝑁𝑊
− |𝑁𝑊

+   356 | 669 

ℎ  .513  ℎ  .397 

       

composite ACT  -.753  Asian  .010 

standard error  .604  standard error  .030 

𝑁𝑊
− |𝑁𝑊

+   505 | 1096  𝑁𝑊
− |𝑁𝑊

+   469 | 951 

ℎ  .620  ℎ  .542 

       

required remedial coursework  .057  American Indian  -.023 

standard error  .061  standard error  .048 

𝑁𝑊
− |𝑁𝑊

+   340 | 628  𝑁𝑊
− |𝑁𝑊

+   416 | 811 

ℎ  .364  ℎ  .496 

       

family income < $40,000  -.051  declined to state race-ethnicity  .008 

standard error  .065  standard error  .021 

𝑁𝑊
− |𝑁𝑊

+   394 | 763  𝑁𝑊
− |𝑁𝑊

+   273 | 504 

ℎ  .421  ℎ  .294 

       

Note: estimates are based on fuzzy regression discontinuity models using the 2.5 GPA 

cutoff during the student’s first semester at UNM (i.e., qualifying semester).  A triangular 

kernel is used to construct local polynomial estimators.  Common mean squared error-

optimal bandwidths, h, determine the neighborhood of the GPA cutoff examined.  Local 

linear regression is used to construct point estimators.  Robust standard errors are clustered 

at the cohort-level.  *, **, and *** signify statistical significance at the 10, five, and one 

percent-levels, respectively. 
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Table 3.  FRD LATE, degree completion, accounting for heaping in qualifying GPA  

 

  (1)  (2)  (3)  

 
 

Baseline 

 
Flexible 

controls 

 Multiples of 

1/3 & 1/4 

removed 

 

        

first stage: NMLLS receipt  .687***  .684***  .682***  

standard error  .036  .037  .030  

        

        

degree within four years  .078  .077  .108**  

standard error  .055  .054  .046  

𝑁𝑊
− |𝑁𝑊

+   358 | 680  355 | 668  272 | 556  

ℎ  .419  .381  .413  

        

degree in 4.5 years  .134  .131  .142*  

standard error  .089  .088  .075  

𝑁𝑊
− |𝑁𝑊

+   416 | 811  504 | 1085  330 | 687  

ℎ  .496  .592  .482  

        

degree within five years  .102  .103  .082  

standard error  .109  .113  .127  

𝑁𝑊
− |𝑁𝑊

+   469 | 951  504 | 1096  168 | 310  

ℎ  .540  .613  .246  

        

degree within six years  .041  .026  .017  

standard error  .062  .052  .114  

𝑁𝑊
− |𝑁𝑊

+   504 | 1092  467 | 948  169 | 313  

ℎ  .608  .530  .264  

        

total observations  3,495  3,495  2,653  

        

Note: estimates are based on fuzzy regression discontinuity models using 

the 2.5 GPA cutoff during the student’s first semester (i.e., qualifying 

semester).  A triangular kernel is used to construct local polynomial 

estimators.  Common mean squared error-optimal bandwidths, h, 

determine the neighborhood of the GPA cutoff examined.  Local linear 

regression is used to construct point estimators.  Robust standard errors 

are clustered at the cohort-level. First-stage results are from models of 

four-year completion rates.  *, **, and *** signify statistical significance 

at the 10, five, and one percent-levels, respectively. 
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Table 4.  FRD LATE, credits earned, accounting for heaping in qualifying GPA 

 

  (1)  (2)  (3)  

 
 

Baseline 

 
Flexible 

controls 

 Multiples of 

1/3 & 1/4 

removed 

 

        

first stage: NMLLS receipt  .696***  .688***  .664***  

standard error  .036  .037  .038  

        

        

credits earned in 2nd semester  -.165  -.264  -.327  

standard error  .265  .288  .448  

𝑁𝑊
− |𝑁𝑊

+   405 | 799  405 | 799  238 | 482  

ℎ  .496  .476  .356  

        

credits earned after two years  2.222  2.033  3.233  

standard error  1.862  1.811  3.897  

𝑁𝑊
− |𝑁𝑊

+   416 | 809  412 | 805  229 | 463  

h  .468  .446  .350  

        

credits earned after three years  4.512*  4.882**  5.707  

standard error  2.606  2.485  5.929  

𝑁𝑊
− |𝑁𝑊

+   412 | 805  467 | 945  245 | 487  

ℎ  .442  .508  .354  

        

credits earned after four years  8.669*  8.826**  8.907  

standard error  4.617  4.381  6.536  

𝑁𝑊
− |𝑁𝑊

+   416 | 809  467 | 944  269 | 544  

ℎ  .460  .510  .387  

        

credits earned after five years  7.645  7.946  7.408  

standard error  5.637  5.412  5.482  

𝑁𝑊
− |𝑁𝑊

+   416 | 811  416 | 811  330 | 685  

ℎ  .485  .479  .464  

        

credits earned after six years  9.659*  8.781  9.214  

standard error  5.564  5.534  6.213  

𝑁𝑊
− |𝑁𝑊

+   416 | 811  469 | 951  326 | 681  

ℎ  .478  .542  .448  

        

total observations  3,495  3,495  2,653  

        

Note: estimates are based on fuzzy regression discontinuity models using the 2.5 

GPA cutoff during the student’s first semester (i.e., qualifying semester).  A 

triangular kernel is used to construct local polynomial estimators.  Common mean 

squared error-optimal bandwidths, h, determine the neighborhood of the GPA cutoff 

examined.  Local linear regression is used to construct point estimators.  Robust 

standard errors are clustered at the cohort-level.  First-stage results are from models 

using credits earned during in the second semester.  *, **, and *** signify statistical 

significance at the 10, five, and one percent-levels, respectively. 
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Table 5.  FRD LATE, course withdrawals, accounting for heaping in qualifying GPA  

 

  (1)  (2)  (3)  

 
 

Baseline 

 
Flexible 

controls 

 Multiples of 

1/3 & 1/4 

removed 

 

        

first stage: NMLLS receipt  .682***  .680***  .633***  

standard error  .039  .040  .071  

        

        

credits withdrawn in 2nd semester  .581  .398  -.277  

standard error  .550  .421  .877  

𝑁𝑊
− |𝑁𝑊

+   315 | 587  315 | 587  129 | 239  

ℎ  .348  .336  .186  

        

credits withdrawn after year 2  .790  .360  .861  

standard error  1.305  1.147  1.589  

𝑁𝑊
− |𝑁𝑊

+   358 | 680  467 | 948  245 | 487  

h  .418  .529  .351  

        

credits withdrawn after year 3  2.403  2.101  2.058  

standard error  2.072  1.852  2.305  

𝑁𝑊
− |𝑁𝑊

+   355 | 668  412 | 805  229 | 463  

ℎ  .386  .520  .332  

        

credits withdrawn after year 4  3.413  2.905  1.539  

standard error  2.867  2.243  3.867  

𝑁𝑊
− |𝑁𝑊

+   273 | 504  315 | 587  168 | 310  

ℎ  .299  .331  .252  

        

credits withdrawn after year 5  3.386  3.147  1.517  

standard error  2.739  2.350  3.795  

𝑁𝑊
− |𝑁𝑊

+   287 | 538  315 | 587  168 | 310  

ℎ  .325  .344  .259  

        

credits withdrawn after year 6  3.685  2.504  1.198  

standard error  3.784  3.412  5.134  

𝑁𝑊
− |𝑁𝑊

+   270 | 483  270 | 483  162 | 286  

ℎ  .288  .288  .219  

        

total observations  3,495  3,495  2,653  

        

Note: estimates are based on fuzzy regression discontinuity models using the 2.5 

GPA cutoff during the student’s first semester (i.e., qualifying semester).  A 

triangular kernel is used to construct local polynomial estimators.  Common mean 

squared error-optimal bandwidths, h, determine the neighborhood of the GPA cutoff 

examined.  Local linear regression is used to construct point estimators.  Robust 

standard errors are clustered at the cohort-level.  First-stage results are from models 

using credits withdrawn during the first year.  *, **, and *** signify statistical 

significance at the 10, five, and one percent-levels, respectively.  
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Table 6.  Bounding exercise, degree completion 

 

  (1)  (2)  (3) 

 

 

Main 

results 

 
Excluding 

suspected 

manipulators, 

 
Excluding 

suspected 

manipulators, 

 
 

 
 

2.5 ≤ GPA ≤ 2.75 
 

2.5 ≤ GPA ≤ 3 

       

first stage: NMLLS receipt  .682***  .546***  .560*** 

standard error  .030  .029  .027 

       

       

degree within four years  .108**  .172***  .153** 

standard error  .046  .062  .064 

𝑁𝑊
− |𝑁𝑊

+   272 | 556  270 | 470  308 | 471 

ℎ  .413  .396  .421 

       

degree in 4.5 years  .142*  .136*  .105 

standard error  .075  .073  .077 

𝑁𝑊
− |𝑁𝑊

+   330 | 687  332 | 619  330 | 515 

ℎ  .482  .547  .547 

       

degree within five years  .082  -.054  -.061 

standard error  .127  .176  .187 

𝑁𝑊
− |𝑁𝑊

+   168 | 310  163 | 216  162 | 213 

ℎ  .246  .228  .211 

       

degree within six years  .017  -.075  -.054 

standard error  .114  .210  .155 

𝑁𝑊
− |𝑁𝑊

+   169 | 313  159 | 203  168 | 235 

ℎ  .264  .208  .246 

       

total observations  2,653  2,578  2,481 

       

Note: both specifications exclude students with heaped qualifying semester GPAs.  Suspected 

manipulators earned the NMLLS with qualifying semester GPAs between 2.5 and 2.75 

(column 2) or 2.5 and 3 (column 3) while either 1) registering for the minimum number of 

credits for scholarship eligibility 2) or dropping at least one course during the qualifying 

semester.  Robust standard errors are clustered at the cohort-level. First-stage results are from 

models of four-year completion rates.  *, **, and *** signify statistical significance at the 10, 

five, and one percent-levels, respectively. 
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Table 7.  Bounding exercise, credits earned 

 

  (1)  (2)  (3) 

 

 

Main 

results 

 
Excluding 

suspected 

manipulators, 

 
Excluding 

suspected 

manipulators, 

    2.5 ≤ GPA ≤ 2.75  2.5 ≤ GPA ≤ 3 

       

       

first stage: NMLLS receipt  .664***  .541***  .478*** 

standard error  .038  .030  .059 

       

       

credits earned in 2nd semester  -.327  -.014  .716 

standard error  .448  .597  .798 

𝑁𝑊
− |𝑁𝑊

+   238 | 482  262 | 467  162 | 233 

ℎ  .356  .397  .249 

       

credits earned after two years  3.233  10.404  9.339 

standard error  3.897  6.355  6.100 

𝑁𝑊
− |𝑁𝑊

+   229 | 463  184 | 244  192 | 301 

h  .350  .290  .306 

       

credits earned after three years  5.707  16.240*  14.053* 

standard error  5.929  9.081  8.550 

𝑁𝑊
− |𝑁𝑊

+   245 | 487  184 | 284  200 | 330 

ℎ  .354  .285  .312 

       

credits earned after four years  8.907  18.576**  16.160* 

standard error  6.536  9.491  8.430 

𝑁𝑊
− |𝑁𝑊

+   269 | 544  229 | 388  269 | 420 

ℎ  .387  .335  .386 

       

credits earned after five years  7.408  15.664**  13.111** 

standard error  5.482  6.985  8.489 

𝑁𝑊
− |𝑁𝑊

+   330 | 685  330 | 618  254 | 382 

ℎ  .464  .534  .367 

       

credits earned after six years  9.214  20.951**  17.924** 

standard error  6.213  8.693  7.450 

𝑁𝑊
− |𝑁𝑊

+   326 | 681  269 | 469  200 | 330 

ℎ  .448  .389  .313 

       

total observations  2,653  2,578  2,481 

       

Note: both specifications exclude students with heaped qualifying semester GPAs.  

Suspected manipulators earned the NMLLS with qualifying semester GPAs between 2.5 

and 2.75 (column 2) or 2.5 and 3 (column 3) while either 1) registering for the minimum 

number of credits for scholarship eligibility 2) or dropping at least one course during the 

qualifying semester.  Robust standard errors are clustered at the cohort-level. First-stage 

results are from models of second semester credits earned.  *, **, and *** signify 

statistical significance at the 10, five, and one percent-levels, respectively. 
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Table 8.  Bounding exercise, course withdrawals  

 

  (1)  (2)  (3) 

 
 

Main 

results 

 Excluding 

suspected 

manipulators, 

 Excluding 

suspected 

manipulators, 

 
 

 
 

2.5 ≤ GPA ≤ 2.75 
 

2.5 ≤ GPA ≤ 3 

       

first stage: NMLLS receipt  .633***  .463***  .459*** 

standard error  .071  .070  .072 

       

       

credits withdrawn in 2nd semester  -.277  -.357  -.438 

standard error  .877  1.045  1.086 

𝑁𝑊
− |𝑁𝑊

+   129 | 239  163 | 216  162 | 213 

ℎ  .186  .221  .214 

       

credits withdrawn after year 2  .861  1.028  1.337 

standard error  1.589  2.901  2.519 

𝑁𝑊
− |𝑁𝑊

+   245 | 487  169 | 238  187 | 301 

h  .351  .262  .292 

       

credits withdrawn after year 3  2.058  3.643  3.768 

standard error  2.305  4.076  3.821 

𝑁𝑊
− |𝑁𝑊

+   229 | 463  192 | 326  200 | 330 

ℎ  .332  .303  .314 

       

credits withdrawn after year 4  1.539  3.515  4.132 

standard error  3.867  6.745  5.523 

𝑁𝑊
− |𝑁𝑊

+   168 | 310  216 | 216  168 | 235 

ℎ  .252  .216  .255 

       

credits withdrawn after year 5  1.517  3.448  4.926 

standard error  3.795  8.628  6.102 

𝑁𝑊
− |𝑁𝑊

+   168 | 310  129 | 166  166 | 232 

ℎ  .259  .176  .231 

       

credits withdrawn after year 6  1.198  .910  2.585 

standard error  5.134  11.906  10.077 

𝑁𝑊
− |𝑁𝑊

+   162 | 286  121 | 151  129 | 166 

ℎ  .219  .137  .188 

       

total observations  2,653  2,578  2,481 

       

Note: both specifications exclude students with heaped qualifying semester GPAs.  

Suspected manipulators earned the NMLLS with qualifying semester GPAs between 2.5 

and 2.75 (column 2) or 2.5 and 3 (column 3) while either 1) registering for the minimum 

number of credits for scholarship eligibility 2) or dropping at least one course during the 

qualifying semester.  Robust standard errors are clustered at the cohort-level. First-stage 

results are from models second semester course withdrawal.  *, **, and *** signify 

statistical significance at the 10, five, and one percent-levels, respectively. 
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APPENDIX A: TESTS FOR CUTOFF MANIPULATION 

 

Table A1.  Testing for manipulation of the qualifying semester GPA cutoff for NMLLS 

eligibility, 1997 to 1999 cohorts 
 

 
 

Bandwidths 
 

Effective obs.  Conv. test 
 

Robust test 
    

ℎ− ≠ ℎ+ 
 

left right 
 

left right  𝑇 p-value 
 

𝑇 p-value     

                 

𝑇2(ℎ̂1)  .605 .552  504 951  1.124 .261  .110 .912     
                 

𝑇3(ℎ̂2)  1.010 .890  697 1630  .574 .566  .193 .847     
                 

𝑇4(ℎ̂3)  1.156 1.112  736 2043  .527 .599  .081 .935     
                 

ℎ− = ℎ+  
  

 
     

 
  

    

                 

𝑇2(ℎ̂1)  .501 .501  467 944  .748 .455  .296 .767     
                 

𝑇3(ℎ̂2)  .890 .890  643 1630  .723 .470  .141 .888     
                 

𝑇4(ℎ̂3)  1.112 1.112  730 2043  .555 .579  .046 .963     
                 

Note: results from manipulation tests following McCrary (2008) and Cattaneo, Jansson, 

and Ma (2016) examining 1997 to 1999 cohorts at UNM.  𝑇𝑝(ℎ) is the manipulation test 

statistic using the p-th order density estimators with bandwidth h.  ℎ̂𝑝 denotes the MSE-

optimal bandwidths for the p-th order density estimator.  A triangular kernel is used to 

construct local polynomial estimators.  Tests are performed with identical and different 

data-driven bandwidths.  Conventional and robust test statistics examine the null 

hypothesis of continuity in the qualifying semester GPA around the NMLLS eligibility 

cutoff. 
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APPENDIX B: VISUAL PRESENTATION OF PLACEBO TREATMENT EFFECTS 
 

 
Note: observations nonrandomly heaped at multiples of one-third and one-fourth have been 

removed.  A linear fit has been added below and above the cutoff centered at zero.  The 

triangular kernel is used to construct the global polynomial estimators. 

 

Figure B1.  Visual check of threshold manipulation in qualifying semester, 1997-1999 
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APPENDIX C: FALSIFICATION TESTING USING ALTERNATIVE CUTOFFS 

 

Table C1. Falsification testing using alternative cutoffs, college completion 

 

  (1)  (2) 

 
 

c = 2.3 

 

c = 2.7 

     

first stage: NMLLS receipt  -.180***  -.071 

standard error  .041  .057 

     

     

degree within four years  .441  .947 

standard error  1.004  .646 

𝑁𝑊
− |𝑁𝑊

+   434 | 1020  473 | 619 

ℎ  .682  .362 

     

degree in 4.5 years  -.038  -2.842 

standard error  .781  8.070 

𝑁𝑊
− |𝑁𝑊

+   336 | 713  344 | 337 

ℎ  .497  .212 

     

degree within five years  .131  .568 

standard error  .540  .733 

𝑁𝑊
− |𝑁𝑊

+   258 | 428  697 | 1087 

ℎ  .334  .580 

     

degree within six years  -.114  4.601 

standard error  .356  8.695 

𝑁𝑊
− |𝑁𝑊

+   205 | 319  423 | 468 

ℎ  .255  .295 
     

Note: estimates are based on fuzzy regression 

discontinuity models using the 2.5 GPA cutoff during 

the student’s qualifying semester.  A triangular kernel is 

used to construct local polynomial estimators.  Common 

mean squared error-optimal bandwidths, h, determine 

the neighborhood of the GPA cutoff examined.  Local 

linear regression is used to construct point estimators. 

𝑁𝑊
−  are effective observations below the cutoff and 𝑁𝑊

+  

are those above.  Robust standard errors are clustered at 

the cohort-level.  *, **, and *** signify statistical 

significance at the 10, five, and one percent-levels, 

respectively.  
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Table C2.  Falsification testing using alternative cutoffs, credit accumulation  

 

  (1)  (2) 

 
 

c = 2.3 

 

c = 2.7 

      

first stage: NMLLS receipt  -.141***  -.132**  

standard error  .049  .057  

      

      

credits earned in 2nd semester  1.719  .734 

standard error  6.630  4.855 

𝑁𝑊
− |𝑁𝑊

+   205 | 316  546 | 797 

ℎ  .268  .445 

     

credits earned after two years  5.070  12.072 

standard error  27.165  17.333 

𝑁𝑊
− |𝑁𝑊

+   205 | 319  597 | 828 

h  .257  .455 

     

credits earned after three years  10.549  167.92 

standard error  33.458  177.26 

𝑁𝑊
− |𝑁𝑊

+   207 | 371  437 | 601 

ℎ  .280  .310 

     

credits earned after four years  -5.555  252.44 

standard error  49.673  268.90 

𝑁𝑊
− |𝑁𝑊

+   205 | 319  437 | 601 

ℎ  .256  .314 

     

credits earned after five years  -13.715  143.89 

standard error  76.283  92.325 

𝑁𝑊
− |𝑁𝑊

+   197 | 286  522 | 653 

ℎ  .239  .377 

     

credits earned after six years  -10.585  194.84 

standard error  46.154  140.06 

𝑁𝑊
− |𝑁𝑊

+   207 | 326  472 | 608 

ℎ  .268  .349 
    

Note: estimates are based on fuzzy regression 

discontinuity models using the 2.5 GPA cutoff during the 

student’s qualifying semester.  A triangular kernel is used 

to construct local polynomial estimators.  Common mean 

squared error-optimal bandwidths, h, determine the 

neighborhood of the GPA cutoff examined.  Local linear 

regression is used to construct point estimators.  𝑁𝑊
−  are 

effective observations below the cutoff and 𝑁𝑊
+  are those 

above.  Robust standard errors are clustered at the cohort-

level.  *, **, and *** signify statistical significance at the 

10, five, and one percent-levels, respectively.  
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Table C3.  Falsification testing using alternative cutoffs, credit withdrawal 

 

  (1)  (2) 

 
 

c = 2.3 

 

c = 2.7 

      

first stage: NMLLS receipt  -.187***  -.079  

standard error  .040  .058  

      

      

credits withdrawn in 2nd semester  .972  1.883 

standard error  4.052  2.350 

𝑁𝑊
− |𝑁𝑊

+   258 | 428  473 | 619 

ℎ  .335  .360 

     

credits withdrawn after year 2  -1.609  8.958 

standard error  10.467  11.134 

𝑁𝑊
− |𝑁𝑊

+   258 | 428  472 | 608 

h  .333  .341 

     

credits withdrawn after year 3  -1.170  4.137 

standard error  15.259  5.875 

𝑁𝑊
− |𝑁𝑊

+   258 | 428  630 | 954 

ℎ  .339  .528 

     

credits withdrawn after year 4  1.861  3.384 

standard error  17.979  9.965 

𝑁𝑊
− |𝑁𝑊

+   266 | 515  749 | 1223 

ℎ  .376  .632 

     

credits withdrawn after year 5  2.998  8.994 

standard error  18.983  10.165 

𝑁𝑊
− |𝑁𝑊

+   258 | 426  555 | 753 

ℎ  .322  .412 

     

credits withdrawn after year 6  4.601  6.891 

standard error  21.903  10.494 

𝑁𝑊
− |𝑁𝑊

+   258 | 426  597 | 828 

ℎ  .325  .457 
    

Note: estimates are based on fuzzy regression discontinuity 

models using the 2.5 GPA cutoff during the student’s 

qualifying semester.  A triangular kernel is used to 

construct local polynomial estimators.  Common mean 

squared error-optimal bandwidths, h, determine the 

neighborhood of the GPA cutoff examined.  Local linear 

regression is used to construct point estimators.  𝑁𝑊
−  are 

effective observations below the cutoff and 𝑁𝑊
+  are those 

above.  Robust standard errors are clustered at the cohort-

level.  *, **, and *** signify statistical significance at the 

10, five, and one percent-levels, respectively.  
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APPENDIX D: PREFERRED SPECIFICATION USING ALTERNATIVE BANDWIDTHS 

 

 

Table D1.  Sensitivity of results to various bandwidths, college completion  

 

  (1)  (2)  (3)  (4) 

 

 
One 

common 

MSE-

optimal 

 
Two 

separate 

MSE-

optimal 

 
One 

common 

CER-

optimal 

 
Two 

separate 

CER-

optimal 

          

first stage: NMLLS eligibility  .682***  .679***  .678***  .674***  

standard error  .030  .038  .032  .042  

          

          

degree within four years  .108**  .104**  .111**  .100** 

standard error  .046  .049  .044  .047 

𝑁𝑊
− |𝑁𝑊

+   272 | 556  270 | 463  268 | 536  254 | 401 

ℎ− | ℎ+   .413 | .413  .494 | .573  .377 | .377  .366 | .306 

         

degree in 4.5 years  .142*  .145*  .132*  .142* 

standard error  .075  .078  .076  .078 

𝑁𝑊
− |𝑁𝑊

+   330 | 687  330 | 639  326 | 681  330 | 544 

ℎ− | ℎ+   .482 | .482  .536 | .421  .440 | .440  .490 | .385 

         

degree within five years  .082  .087  .079  .100 

standard error  .127  .092  .131  .104 

𝑁𝑊
− |𝑁𝑊

+   168 | 310  162 | 1074  163 | 290  159 | 977 

ℎ− | ℎ+   .246 | .246  .215 | .734  .225 | .225  .196 | .671 

         

degree within six years  .017  .068  .021  .076 

standard error  .114  .131  .121  .150 

𝑁𝑊
− |𝑁𝑊

+   169 | 313  159 | 685  168 | 310  129 | 556 

ℎ− | ℎ+   .264 | .264  .207 | .452  .242 | .242  .189 | .413 

         

Note: all models exclude multiples of one-third and one-fourth.  Estimates 

are based on fuzzy regression discontinuity models using the 2.5 GPA cutoff 

during the student’s first semester (i.e., qualifying semester).  A triangular 

kernel is used to construct local polynomial estimators.  Common mean 

squared error-optimal bandwidths, h, determine the neighborhood of the 

GPA cutoff examined.  Local linear regression is used to construct point 

estimators.  Robust standard errors are clustered at the cohort-level. First-

stage results are from models using credits withdrawn during the first year.  

Models employ local linear regression and use mean squared error (MSE)-

optimal and coverage error ration (CER)-optimal bandwidths.  *, **, and *** 

signify statistical significance at the 10, five, and one percent-levels, 

respectively. 
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Table D2. Sensitivity of results to various bandwidths, credit accumulation 

 

  (1)  (2)  (3)  (4)  

 

 
One 

common 

MSE-

optimal 

 
Two 

separate 

MSE-

optimal 

 
One 

common 

CER-

optimal 

 
Two 

separate 

CER-

optimal 

 

          

first stage: NMLLS eligibility  .664***  .657***  .661***  .654***  

standard error  .038  .040  .043  .041  

          

          

credits after second semester  -.327  .088  -.086  .203 

standard error  .448  .494  .471  .580 

𝑁𝑊
− |𝑁𝑊

+   238 | 482  195 | 678  195 | 409  181 | 632 

ℎ− | ℎ+   .356 | .356  .321 | .464  .326 | .326  .293 | .425 

         

credits after two years  3.233  5.028  4.148  5.768 

standard error  3.897  4.269  4.002  4.493 

𝑁𝑊
− |𝑁𝑊

+   229 | 463  192 | 842  200 | 410  184 | 739 

ℎ− | ℎ+   .350 | .350  .301 | .625  .320 | .320  .275 | .571 

         

credits after three years  5.707  8.509  6.498  9.915 

standard error  5.929  6.664  6.158  7.027 

𝑁𝑊
− |𝑁𝑊

+   245 | 487  192 | 826  201 | 414  184 | 693 

ℎ− | ℎ+   .354 | .354  .303 | .587  .324 | .324  .277 | .537 

         

credits after four years  8.907  10.423  8.941  11.882* 

standard error  6.536  7.188  6.817  7.093 

𝑁𝑊
− |𝑁𝑊

+   269 | 544  245 | 694  245 | 487  201 | 687 

ℎ− | ℎ+   .387 | .387  .356 | .544  .354 | .354  .326 | .497 

         

credits after five years  7.408  6.745  6.876  6.729 

standard error  5.482  5.268  5.875  5.240 

𝑁𝑊
− |𝑁𝑊

+   330 | 685  367 | 826  308 | 639  332 | 693 

ℎ− | ℎ+   .464 | .464  .598 | .581  .424 | .424  .547 | .531 

         

credits after six years  9.214  9.151  8.924  8.682 

standard error  6.213  6.340  6.544  5.701 

𝑁𝑊
− |𝑁𝑊

+   326 | 681  269 | 544  272 | 550  229 | 487 

ℎ− | ℎ+   .448 | .448  .380 | .385  .410 | .410  .348 | .352 

         

Note: all models exclude multiples of one-third and one-fourth. Estimates are 

based on fuzzy regression discontinuity models using the 2.5 GPA cutoff 

during the student’s first semester (i.e., qualifying semester).  A triangular 

kernel is used to construct local polynomial estimators.  Common mean 

squared error-optimal bandwidths, h, determine the neighborhood of the 

GPA cutoff examined.  Local linear regression is used to construct point 

estimators.  Robust standard errors are clustered at the cohort-level. First-

stage results are from models using credits withdrawn during the first year.  

Models employ local linear regression and use mean squared error (MSE)-

optimal and coverage error ration (CER)-optimal bandwidths.  *, **, and *** 

signify statistical significance at the 10, five, and one percent-levels, 

respectively. 
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Table D3. Sensitivity of results to various bandwidths, credit withdrawal 

 

  (1)  (2)  (3)  (4)  

 

 
One 

common 

MSE-

optimal 

 
Two 

separate 

MSE-

optimal 

 
One 

common 

CER-

optimal 

 
Two 

separate 

CER-

optimal 

 

          

first stage: NMLLS eligibility  .633***  .637***  .633***  .639***  

standard error  .071  .062  .070  .057  

          

          

credits withdrawn after second semester  -.277  -.222  -.271  -.191 

standard error  .877  .549  .880  .556 

𝑁𝑊
− |𝑁𝑊

+   129 | 239  129 | 545  129 | 239  128 | 487 

ℎ− | ℎ+   .186 | .186  .155 | .392  .170 | .170  .142 | .359 

         

credits withdrawn after two years  .861  .812  .670  .768 

standard error  1.589  2.290  1.758  2.416 

𝑁𝑊
− |𝑁𝑊

+   245 | 487  168 | 694  201 | 414  166 | 687 

ℎ− | ℎ+   .351 | .351  .260 | .550  .321 | .321  .238 | .503 

         

credits withdrawn after three years  2.058  2.102  1.717  2.009 

standard error  2.305  3.142  2.714  3.416 

𝑁𝑊
− |𝑁𝑊

+   229 | 463  184 | 739  192 | 401  168 | 691 

ℎ− | ℎ+   .332 | .332  .277 | .575  .304 | .304  .253 | .526 

         

credits withdrawn after four years  1.539  .750  1.255  .382 

standard error  3.867  5.847  4.207  6.146 

𝑁𝑊
− |𝑁𝑊

+   168 | 310  159 | 694  166 | 307  129 | 687 

ℎ− | ℎ+   .252 | .252  .193 | .556  .230 | .230  .176 | .509 

         

credits withdrawn after five years  1.517  .185  1.280  -.133 

standard error  3.795  5.968  4.096  6.053 

𝑁𝑊
− |𝑁𝑊

+   168 | 310  129 | 687  166 | 307  129 | 687 

ℎ− | ℎ+   .259 | .259  .164 | .518  .237 | .237  .150 | .474 

         

credits withdrawn after six years  1.198  -.920  .503  -1.796 

standard error  5.134  7.270  5.703  7.202 

𝑁𝑊
− |𝑁𝑊

+   162 | 286  121 | 687  159 | 276  121 | 681 

ℎ− | ℎ+   .219 | .219  .137 | .485  .201 | .201  .125 | .443 

         

Note: all models exclude multiples of one-third and one-fourth. Estimates are based 

on fuzzy regression discontinuity models using the 2.5 GPA cutoff during the 

student’s first semester (i.e., qualifying semester). A triangular kernel is used to 

construct local polynomial estimators. Common mean squared error-optimal 

bandwidths, h, determine the neighborhood of the GPA cutoff examined. Local 

linear regression is used to construct point estimators. Robust standard errors are 

clustered at the cohort-level. First-stage results are from models using credits 

withdrawn during the first year. Models employ local linear regression and use mean 

squared error (MSE)-optimal and coverage error ration (CER)-optimal bandwidths. 

*, **, and *** signify statistical significance at the 10, five, and one percent-levels, 

respectively. 
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APPENDIX E:  TESTS FOR EXTERNAL VALIDITY 

 

Table E1.  Tests of external validity using treatment effect derivatives and complier probability 

derivatives 

 

  (1)  (2)  (3) 

 

 

LATE 

 

TED 

 

CPD 

       

degree within four years  .080*  .075  .003 
  (.045)  (.249)  (.171) 

       

degree within 4.5 years  .129**  .365  .057 
  (.058)  (.263)  (.141) 

       

degree within five years  .078  .242  .033 
  (.071)  (.357)  (.154) 

       

degree within six years  .028  .357  .055 

  (.076)  (.347)  (.143) 

       

credits earned in second semester  -.341  1.777  -.078 

  (.472)  (3.416)  (.253) 

       

credits earned after two years  1.514  6.697  -.054 

  (2.151)  (13.509)  (.204) 

       

credits earned after three years  3.046  11.011  .005 

  (3.499)  (19.242)  (.170) 

       

credits earned after four years  6.198  26.119  -.035 

  (5.474)  (32.793)  (.191) 

       

credits earned after five years  4.675  22.172  -.002 

  (6.381)  (35.738)  (.174) 

       

credits earned after six years  6.266  14.386  -.001 

  (6.971)  (38.942)  (.174) 

       

total observations      3,495 

       

Note: models exclude students with qualifying semester GPA heaped at 

multiples of one-third and one-fourth.  Estimates are based on fuzzy 

regression discontinuity models using the 2.5 GPA cutoff during the 

student’s first semester (i.e., qualifying semester) and are not adjusted for 

covariates.  TED is the treatment effect derivative and CPD is the complier 

probability derivative.  A triangular kernel is used to construct local 

polynomial estimators.  Common mean squared error-optimal bandwidths, h, 

determine the neighborhood of the GPA cutoff examined.  Local linear 

regression is used to construct point estimators.  The user-written Stata 

command ted, by Giovanni Cerulli, produces the results above.  Robust 

standard errors are reported in parentheses.  *, **, and *** signify statistical 

significance at the 10, five, and one percent-levels, respectively. 
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Table E1.  Tests of external validity using treatment effect derivatives and complier probability 

derivatives (continued) 

 

  (1)  (2)  (3) 

 

 

LATE 

 

TED 

 

CPD 

       

credits withdrawn during second semester  .480  2.187  -.094 

  (.386)  (2.806)  (.249) 

       

credits withdrawn during first two years  .802  .357  -.032 

  (.687)  (4.086)  (.189) 

       

credits withdrawn during first three years  1.728*  1.783  .033 

  (.912)  (4.588)  (.155) 

       

credits withdrawn during first four years  3.317***  4.756  -.046 

  (1.144)  (7.034)  (.198) 

       

credits withdrawn during first five years  3.121**  4.623  -.064 

  (1.443)  (9.469)  (.215) 

       

credits withdrawn during first six years  3.596**  7.770  -.074 

  (1.683)  (11.490)  (.226) 

       

total observations      3,495 

       

Note: models exclude students with qualifying semester GPA heaped at 

multiples of one-third and one-fourth.  Estimates are based on fuzzy 

regression discontinuity models using the 2.5 GPA cutoff during the 

student’s first semester (i.e., qualifying semester) and are not adjusted for 

covariates.  TED is the treatment effect derivative and CPD is the 

complier probability derivative.  A triangular kernel is used to construct 

local polynomial estimators. Common mean squared error-optimal 

bandwidths, h, determine the neighborhood of the GPA cutoff examined.  

Local linear regression is used to construct point estimators.  The user-

written Stata command ted, by Giovanni Cerulli, produces the results 

above.  Robust standard errors are reported in parentheses.  *, **, and *** 

signify statistical significance at the 10, five, and one percent-levels, 

respectively. 
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APPENDIX F:  DESCRIPTIVE STATISTICS BY SUBSAMPLE 

 

Table F1.  Descriptive statistics, 1997 to 1999 cohorts, by subsample 

 
 (1) (2)  (3) 

 

Full sample (1) Less heaped  

(2) Less suspected 

manipulators,         

2.5 ≤ GPA ≤ 2.75 

     

qualifying semester credits:     

registered 14.192 (1.674) 14.267 (1.642)  14.325 (1.632) 

earned 13.771 (1.763) 13.944 (1.735)  13.998 (1.729) 

withdrawn .570 (1.215) .516 (1.165)  .504 (1.156) 

     

bachelor’s degree within (years):     

4 .164 .173  .176 

4.5 .288 .299  .301 

5 .460 .469  .471 

6 .559 .571  .574 

     

credits earned within (years):     

1 27.049 (4.122) 27.391 (3.970)  27.478 (3.956) 

2 50.069 (13.799) 50.704 (13.577)  50.889 (13.569) 

3 70.403 (24.582) 71.334 (24.287)  71.668 (24.261) 

4 89.592 (36.051) 90.890 (35.588)  91.364 (31.512) 

5 101.312 (42.211) 102.601 (41.652)  103.090 (41.544) 

6 106.507 (44.797) 107.849 (44.266)  108.337 (44.165) 

     

credits withdrawn within (years):     

1 1.857 (2.622) 1.745 (2.508)  1.721 (2.493) 

2 3.757 (4.253) 3.597 (4.165)  3.570 (4.157) 

3 5.387 (6.626) 5.194 (5.544)  5.173 (5.555) 

4 7.080 (7.033) 6.885 (6.947)  6.868 (6.975) 

5 8.226 (8.154) 8.051 (8.120)  8.045 (8.158) 

6 9.761 (9.534) 9.525 (9.500)  9.508 (9.544) 

     

female .553 .562  .561 

high school GPA 3.435 (.450) 3.448 (.448)  3.455 (.447) 

composite ACT 24.007 (3.240) 24.120 (3.275)  24.164 (3.282) 

required remedial coursework .066 .062  .061 

family income < $40,000 .176 .171  .170 

family income < $20,000 .078 .077  .077 

     

white .576 .578  .581 

Hispanic .319 .311  .309 

Asian .040 .044  .043 

American Indian .034 .037  .037 

black .017 .017  .018 

declined to state race-ethnicity .014 .013  .012 

     

total observations 3,495 2,653  2,578 

Source: Freshmen Tracking System, Office of Institutional Analytics, University of 

New Mexico.  Standard deviations are in parentheses. 


