Team Liam McAteer
Rachel Lee
Bonita Ryda
Afton Lim
Mentor Livia Krstic
Client Ryan Ashton

About the Project

Background:

A Few Quiet Yarns, or AFQY for short, owned by Ryan
Ashton, is an initiative which runs networking events that
are primarily aimed at CEOs and CTOs. The networking
events aim to form better and more meaningful
connections with the others that are attending by
allowing the participants to “Meet the person, not the
suit”. The events are different from other networking
events in which there is to be no selling of products or
services. This ensures that the attendees form
connections over interests outside of work.

Rationale:

The events have been running for 13 years, and over
this time, they have gained more attendees. This makes
it more difficult to find specific people to connect with.
AFQY needs a solution to help the attendees to find
meaningful connections based on similar interests.
Initially, AFQY used the LinkedIn event feature to
promote and encourage conversation before events,
however this feature changed and it is not useful to
AFQY anymore.

Our Solution:

Ryan suggested that some kind of application would be
useful to improve conversation before and after AFQY
events. After some research and refining the project
scope, we proposed that a cross-platform mobile app
would be suitable. The application front end was built
using Google's cross-platform mobile framework called
Flutter, and the back end was hosted on Firebase which
is a mobile back end as a service (MBasS). The MVP of
the project included an attendee match-making system
and chat. It was also proposed that the app shall
support sponsored business spaces if the time allowed.

Methodology:

For this project, both us and our client wanted results to
be delivered iteratively. So, we decided to use the scrum
framework which is part of the Agile methodology.
Scrum iteratively delivers new software in short bursts
called Sprints (Collab Net, 2020). During the project, our
team had a total of five sprints, each lasting three weeks
long. This was to ensure that the client was able to see
our progress more frequently and be able to give
feedback or request some changes before the final
product has been made. Over this time, the product
scope was shaped towards what the client wanted. At
the start of each sprint, we held sprint planning
meetings with the client to define the scope for the next
sprint. We also held planning poker sessions to
determine the difficulty of user stories as a team. At the
end of the sprint we held sprint review and sprint
retrospective meetings to review the product and team
performance.

Planning and research:

Research was conducted before development to ensure
that the product would meet the brief and the
expectations of the client. Key research points include;
deciding between developing a Progressive Web
Application (PWA) or Native Mobile Application, choosing
a framework for developing a native mobile application
(Flutter or React Native), and choosing between Firebase
or AWS Amplify for our backend.

Development:

Our team's codebase was hosted on GitHub and we
made use of the git flow branching strategy to manage
our branches. Git flow has separate branches for
released code, in-development code, and features.
When we were finished with a feature a pull request was
created on GitHub and the team would test the feature
through acceptance testing.

Acknowledgements:

References:

We would like to thank our client Ryan Ashton, our mentor Collab Net. (2020, May 3). What is Scrum Methodology?

Livia Krstic, the BCIS R&D Project team and the AFQY
community for supporting us throughout our project.

https://resources.collab.net/agile-101/what-is-scrum
Li, D. D., & Liu, X. Y. (2020). Research on MVP Design Pattern

Modeling Based on MDA. Procedia Computer Science, 166, 51-

56. https://doi.org/10.1016/j.procs.2020.02.012

Quality Assurance

Code Review:

Each feature developed by the members are pushed into
different branches and must be tested by another
members, on their local machine and ensure sure the
feature is working before merging it to the main branch.
This ensures that we have followed coding standards
and that we improve code quality.

Acceptance Testing:

At the end of development of each user story, the
assigned tester has performed acceptance tests to
ensure the feature satisfies the acceptance criteria and
to identify and resolve any errors.

Usability Testing:

Usability testing was conducted during the client
meetings and the team made appropriate changes
based on the client feedback. Beta version of the app
was also tested in an AFQY event which has provided the
team with further insight into improving the app.

Challenges

Non-Technical

Pandemic: Covid-19 caused some delays throughout
the project timeline by making it more difficult to
conduct mob programming sessions and to hold sprint
reviews with the client. Throughout the pandemic we
kept in contact via Facebook Messenger and through
voice calls. We found that voice calls helped with
programming, however they weren't as good as mob
programming sessions. In our client meetings, we
showcased the app via screen share.

Scope: The initial scope was very extensive for the
timeframe of the project, so we had to hold many weekly
meetings with the client to refine the scope to a more
manageable size.

Technical

Mobile Development: None of the team had any
experience with Mobile development, including Flutter
and Firebase. To overcome the lack of skills, we used the
Covid-19 lockdown as an opportunity to upskill in all

A Few Quiet Yarns Android/ I0S App
 Process

areas that were lacking. As a team we decided to share
helpful resources for upskilling and we helped each other
when we had issues.

Artefacts and Results

7" Firebase
e\
PoFirebase
Cloud
i DO Fiestore
1 sade
DI
Update Interests. n ‘ d e .
® . eventbrite
O lee
O ) ] s
Figure 1: Technology Interaction Diagram
Artefacts

Meeting minutes, cross platform mobile application,
source code and a handover document that includes
technology interaction diagram, development
environment, and instructions on analytics and how to
manage users on firebase.

Architecture
The team followed Model View Presenter (MVP)
architecture. The three components are:

- Model represents the data layer
- View represents the display of the app
- Presenter represents logic layer, acts as a bridge

between Model and View connecting the
two. Grabs user input from View, filter data
with Model and updates View based on the
changes. (Li & Liu, 2020)
Any communication between View and Model is
performed by the presenter and they do not directly
interact each other. The architecture was chosen for its
code reusability and maintainability resulted by this
decoupling.

AFQY App

< AFQY - OCT 29th - A ans

Figure 2: App Screenshotx



