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Abstract

Ryan (2017) introduced a condition on binary stochastic choice between lotteries

which we call Weak Transparent Dominance (WTD). Consider a binary choice set

containing two different mixtures over a “best” and a “worst” possible prize, so

that one option transparently dominates the other. The WTD axiom says that the

probability of choosing the dominant alternative depends only on the difference in

the chance of winning the “best” prize across the two lotteries. A person whose

choices always respect first-order stochastic dominance (FOSD) will satisfy this

condition, but WTD is a weaker requirement. We show that WTD and strong

stochastic transitivity (SST), together with a mild technical condition, ensure the

existence of a Fechner model for choice probabilities. This implies, in particular,

that for choice probabilities satisfying WTD and our technical condition, there is no

observable difference between scalability (Krantz, 1964; Tversky and Russo, 1969)

and compatibility with a Fechner model.
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1 Introduction

Fechnerian models of random binary choice, such as the binary logit model, express choice

probabilities as functions of the utility difference between the two alternatives. Leonard

Savage (inter alia) identified a weakness of such models (see Luce and Suppes, 1965,

pp.334-337): if utility difference is the sole driver of choice probability, then the reliability

with which a dominating option is chosen over a dominated alternative should carry over to

any other choice pair with the same utility difference, even if no dominance relationship

exists in the latter case. However, for most standard utility models this is empirically

untenable.

When choosing between lotteries, the presence of first-order stochastic dominance

(FOSD) relationships can therefore be problematic for Fechnerian model fitting. These

and other empirical problems motivate the use of “context-dependent”generalisations of

the Fechner model (Wilcox, 2008, 2011). For example, Blavatskyy (2011) provides ax-

iomatic foundations for a model in which choice probabilities are functions of expected

utility differences, but only after conditioning on a context defined by the upper (domi-

nating) and lower (dominated) envelope for the choice pair.1

The root of the problem is neatly captured by Tversky (1972, p.284): “Choice prob-

abilities [...] reflect not only the utilities of the alternatives, but also the diffi culty of

comparing them”. Fechnerian models miss the comparability dimension. As noted by

Tversky (1972),2 the same deficiency affl icts the broader class of scalable choice probabili-

ties (Krantz, 1964; Tversky and Russo, 1969). In these models, the probability of choosing

one option over another is non-decreasing in the utility of the former and non-increasing in

the utility of the latter, irrespective of the relative comparability of the alternatives. The

Fechnerian special case arises when the function mapping utilities to choice probabilities

is linear —choice probabilities depend only on utility differences.

We explore this tension between scalability and dominance in the context of lottery

choice. Our main result shows the following: choice probabilities that respect a weak form

of stochastic dominance monotonicity (Axiom 3)3 and satisfy a mild technical condition

(Assumption 1) are scalable if and only if they possess a Fechnerian model. In particular,

given our technical assumption, we show that any choice probabilities satisfying our Axiom

3 and strong stochastic transitivity (SST)4 must have a Fechnerian representation.

1See Blavatskyy (2011) for formal definitions.
2A similar observation had earlier been made by Krantz (1967, pp.235-6).
3This reproduces Axiom 7 from Ryan (2017).
4See Definition 1 below.

2



In short, if the tension is between stochastic transitivity and our weak form of dom-

inance monotonicity can be resolved, then the distinction between scalability and Fech-

nerian structure vanishes; if not, then both structures are equally untenable. Stochastic

dominance monotonicity is therefore equally problematic for scalability and Fechnerian

structure in a rather precise sense: given a weak form of such monotonicity (and our

technical condition), both models are characterised by SST.

2 Preliminaries

Let A be the unit simplex in Rn. Points in A will be interpreted as lotteries over a given
set X = {x1, ..., xn} of outcomes. If a ∈ A then ai is the probability with which lottery a
delivers the outcome xi. Hence ai ∈ [0, 1] for each i ∈ {1, 2, ..., n} and

∑n
i=1 ai = 1. We

use δi ∈ A to denote the lottery that delivers outcome xi with certainty. That is: δii = 1
and δij = 0 for any j 6= i. Following standard convention, if a, b ∈ A and λ ∈ [0, 1] then
aλb denotes the convex combination λa+ (1− λ) b.
A binary choice probability (BCP) is a mapping P : A× A→ [0, 1] that satisfies

P (a, b) + P (b, a) = 1 (1)

This is called the balance or completeness condition.5 If a 6= b, then P (a, b) is the

probability of choosing a from the binary choice set {a, b}. No behavioural interpretation
is given to P (a, b) when a = b, but (1) implies that P (a, a) = 1

2
for all a ∈ A.

Let P denote the set of all BCPs. Associated with any P ∈ P is its base relation,
%P⊆ A× A, defined as follows:

a %P b ⇔ P (a, b) ≥ 1
2

(2)

The binary relations �P and ∼P are determined from %P in the usual way.

Definition 1. A weak utility for P is a function u : A → R that represents the base

relation: that is, u (a) ≥ u (b) iff a %P b.

We will focus on the subset of BCPs that satisfy an auxiliary condition.

Assumption 1. There exist h, ` ∈ {1, 2, ..., n} and a continuous weak utility, u : A→ R,
for P such that (I) u

(
δh
)
≥ u (a) ≥ u

(
δ`
)
for all a ∈ A, and (II) u

(
δhλδ`

)
is strictly

increasing in λ.
5It is sometimes imposed as an axiomatic restriction on P but we incorporate it directly into the

definition of a BCP for convenience.
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Let R ⊆ P be the set of BCPs that satisfy Assumption 1. Note that Assumption 1
restricts only the base relation, %P . There are well-known axiomatic conditions on %P

that are equivalent to Assumption 1. These may be translated into conditions on P ∈ P
via (2). The role of Assumption 1 is to ensure that any a ∈ A has a unique λ such that
a ∼P δhλδ` and that these “probability equivalents” are weak utilities. In particular,

P ∈ R if P possesses a weak utility from almost any standard class of utility functions

for lotteries, including EU, Implicit Expected Utility (Dekel, 1986) and Rank-Dependent

Expected Utility (Quiggin, 1982).

Finally, we introduce four classes of models for BCPs.6

Definition 2 (Ryan, 2018). We say that P ∈ P is strictly scalable if there exists (u, F )
such that

P (a, b) = F (u (a) , u (b))

for all a, b ∈ A, where u is a weak utility for P and F : u (A) × u (A) → R is weakly

increasing (respectively, weakly decreasing) in its first (respectively, second) argument. In

this case, we say that P ∈ P is strictly scalable by (u, F ).

Definition 3 (Tversky and Russo, 1969). We say that P ∈ P is simply scalable if it
is strictly scalable by some (u, F ) such that F is strictly increasing (respectively, strictly

decreasing) in its first (respectively, second) argument. In this case, we say that P ∈ P is
simply scalable by (u, F ).

Definition 4. We say that P ∈ P has a Fechner model if is it strictly scalable by

some (u, F ) such that F depends only on utility differences: that is, F (x, y) = F (x′, y′)

whenever x− y = x′ − y′.

Definition 5. We say that P ∈ P has a strong Fechner model if is it simply scalable
by some (u, F ) such that F depends only on utility differences.

It is useful to note that if P ∈ P is strictly scalable, and if u is a weak utility for P ,
then P is strictly scalable by (u, F ) for some F : u (A)× u (A)→ [0, 1]. The same is true

if “strictly”is replaced by “simply”.

Lemma 1. Let P ∈ P be strictly (respectively, simply) scalable by (u, F ). If h : u (A)→ R
is strictly increasing and û = h ◦ u, then there exists an F̂ : û (A) × û (A) → [0, 1] such

that P is strictly (respectively, simply) scalable through
(
û, F̂

)
.

6The reader is warned that the terminology for Fechnerian models is not standardised. The termini-

nology in Definitions 4 and 5 is somewhat idiosyncratic to this paper.
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Proof: The condition
F̂ (x, y) = F

(
h−1 (x) , h−1 (y)

)
determines a well-defined function F̂ : û (A) × û (A) → [0, 1] which shares the same

monotonicity properties as F . Moreover, if u represents %P then so does û. �

3 Main Results

Our main results (Theorems 1 and 2) provide conditions under which P ∈ R possesses a
model within one of the four classes. These conditions involve the following axioms, the

first two of which are well-known,7 while the third was introduced (unnamed) in Ryan

(2017).

Axiom 1 (Strong Stochastic Transitivity [SST]). For all a, b, c ∈ A,

min {P (a, b) , P (b, c)} ≥ 1
2
⇒ P (a, c) ≥ max {P (a, b) , P (b, c)} .

Axiom 2 (Strict Stochastic Transitivity [StST]). For all a, b, c ∈ A,

min {P (a, b) , P (b, c)} ≥ [>] 1
2
⇒ P (a, c) ≥ [>] max {P (a, b) , P (b, c)} .

Axiom 3 (Weak Transparent Dominance [WTD]). If δh, δ` ∈
{
δ1, ..., δn

}
are such that

δi %P δ` and δh %P δi for all i, then

P
(
δhαδ`, δhβδ`

)
= P

(
δhλδ`, δhµδ`

)
(3)

for any α, β, λ, µ ∈ [0, 1] with α− β = λ− µ.

Only the WTD axiom requires further explanation. Each lottery appearing in (3) is

a mixture of a “best”(xh) and a “worst”(x`) possible outcome in X. Thus, the lottery

pair on each side of (3) is ordered by “transparent dominance”(Birnbaum and Navarrete,

1998, p.52): the lotteries in the pair differ (if at all) only in the probability assigned to the

“best”outcome. (This motivates the name of Axiom 3.) The WTD axiom says that the

probability of choosing one such lottery over another depends only on the difference in the

chance of securing the “best”outcome. A suffi cient condition for P to satisfy WTD is that

P
(
δhαδ`, δhβδ`

)
= 1 whenever α > β. In other words, if the decision-maker is certain

to respect FOSD when choosing between pairs from the set
{
δhλδ` | λ ∈ [0, 1]

}
then s/he

7Our nomenclature follows Fishburn (1973).
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satisfies WTD. However, WTD is a much weaker restriction on choice probabilities than

this.

We may now prove:

Theorem 1. Suppose P ∈ R satisfies WTD. Then the following are equivalent:

(i) P satisfies SST.

(ii) P is strictly scalable.

(iii) P has a Fechner model.

Proof: That (i) implies (ii) and (iii) implies (i) follows from Ryan (2018, Theorem 14).

It remains to show that (ii) implies (iii). Assume, then, that P ∈ R is strictly scalable.

Let u be the weak utility whose existence is guaranteed by Assumption 1. Since u is

continuous and satisfies conditions (I) and (II) of Assumption 1, for every a there exists a

unique 〈a〉 ∈ [0, 1] such that u (a) = u
(
δh 〈a〉 δ`

)
, and u (a) ≥ u (b) iff 〈a〉 ≥ 〈b〉. It follows

that the function v : A→ [0, 1] defined by v (a) = 〈a〉 is a(nother) weak utility for P . By
Lemma 1 there is some F : v (A) × v (A) → R such that P is strictly scalable by (v, F ).

We claim that F (x, y) depends only on x− y. Suppose x− y = x̂− ŷ. Let

a = δhxδ`

b = δhyδ`

â = δhx̂δ`

and

b̂ = δhŷδ`

so that F (x, y) = P (a, b) and F (x̂, ŷ) = P
(
â, b̂
)
. Axiom 3 implies P (a, b) = P

(
â, b̂
)

as required. Thus, P has a Fechner model. �

Ryan (2017, Theorem 2) is a special case of Theorem 1 that imposes additional con-

ditions to ensure the existence of a weak utility of the Implicit Expected Utility form;

these conditions imply Assumption 1. Theorem 1 elucidates a more general logic that

underpins this specialised result.

By replacing SST with StST, we obtain an analogous result for the strictly monotone

models:

Theorem 2. Suppose P ∈ R satisfies WTD. Then the following are equivalent:
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(i) P satisfies StST.

(ii) P is simply scalable.

(iii) P has a strong Fechner model.

Proof: The proof follows that of Theorem 1, mutatis mutandis. That (i) implies (ii) and
(iii) implies (i) now follows from Tversky and Russo (1969). The rest of the argument is

the same, except that “simply scalable”replaces “strictly scalable”and “strong Fechner”

replaces “Fechner”. �

4 Discussion

Theorems 1 and 2 show that the tension between dominance and SST affl icts scalability

and Fechnerian models alike, and when P ∈ R the distinction between these models van-
ishes provided choice probabilities respect transparent dominance in the sense of Axiom

3.

Our results have implications for the prospects of Fechnerian models that embed any

standard utility function over lotteries, since almost any such model generates a BCP in

R. If WTD holds, then validation of such models is equivalent to verifying SST plus

the existence of a weak utility of the required form. Moreover, it is hard to imagine

that empirical tests will be powerful enough to reject WTD, given the very low rates at

which transparently dominated options are typically observed to be chosen (Loomes and

Sugden, 1998, p.593).8 In short, the fate of Fechnerian models of lottery choice rests

almost entirely on the empirical validity of SST.
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