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ABSTRACT 

Current literature on public hospital efficiency in Australia only reveals 

information on how efficient public hospitals are in the short run. The presence 

of persistent technical inefficiency arising from long-term systemic problems and 

government-related regulatory constraints does not appear to have been 

addressed. Using yearly panel data for the period 2002-2018 on eight Australian 

states and territories, this study incorporates the measure of both transient and 

persistent technical inefficiency while controlling for unobserved heterogeneity 

to obtain a more precise measure of technical efficiency. The results of this study 

indicate that the technical inefficiency among public hospitals in Australia is 

persistent rather than transient based on state and territory level data. This implies 

that policymakers need to formulate comprehensive policies involving a longer 

time horizon that focuses on reducing the persistence in inefficiency among 

public hospitals in Australia. The study also calls on policymakers and regulators 

to disclose hospital-level data to researchers in order to gain further insight into 

the causes of persistence in inefficiency to formulate effective policies. 

 

Keywords: stochastic frontier analysis; Australian hospitals; technical efficiency; persistent 

inefficiency; frontier estimation; Bayesian, STAN 
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1. Introduction 

Like in many other developed countries, healthcare services in Australia account for a sizeable 

proportion of national, state and territory expenditures. Australia's healthcare expenditure is 

expected to increase in the coming decades to meet demand due to the ageing population, 

increasing incomes and consumer expectations (Australian Institute of Health Welfare, 2019; 

Australian Productivity Commission, 2015a). In 2017-2018, Australians spent nearly $185.4 

billion (10% of GDP) on health products and services (i.e. government and non-governmental 

health spending), an average of $7,485 per capita (Australian Institute of Health Welfare, 

2019). 

 

The largest share of this budget (31.1%) was spent on public hospitals, with states and 

territories providing much of the funding, $29.9 billion (51.8%), followed by the Australian 

government spending of $22.7 billion (39.4%) and NGOs providing $5.1 billion (8.9%) 

(Australian Institute of Health Welfare, 2019). In the future, Australian government spending 

alone is expected to hit 5.7% of GDP by 2054-2055 (or $260 billion in current dollars), a 1.5% 

rise from 4.2% of GDP in 2014-2015 (Australian Productivity Commission, 2015a). 

 

In light of increasing healthcare expenditure, understanding the efficiency of the health system, 

including public hospitals, has become an essential issue for government, healthcare funders 

and regulators (Australian Productivity Commission, 2015a; Wang et al., 2006). Furthermore, 

efficiency measurement of public hospitals provides a measure to estimate how effectively 

public funds are utilised in providing hospital services. 

 

The literature on the efficiency of Australian public hospitals is thin, with studies limited to 

hospitals in specific states and territories (Nghiem et al., 2011; Wang et al., 2006). An 

exception in the Australian literature is a study commissioned by the Australian Productivity 

Commission (Forbes et al. 2010) which undertook the technical efficiency analysis of selected 

private and public acute hospitals in Australia for the period 2004-2007. While their study 

estimated the transient level of technical efficiency, it overlooked the persistent technical 

inefficiency that lies hidden within the unobserved heterogeneity. According to Tsionas and 

Kumbhakar (2014) and Badunenko and Kumbhakar (2016), ignoring the persistent nature of 

technical inefficiency causes an upward bias in the measure of efficiency, which can lead to 

incorrect policy implications. 
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We approached the Australian Bureau of Statistics and the Australian Institute of Health 

Welfare to obtain more recent data similar to those used by Forbes et al. (2010). Our intention 

with this study was to compute transient and persistent technical inefficiency while 

simultaneously controlling for unobserved heterogeneity. However, our request for data was 

denied, possibly due to restricted access and the sensitive nature of the data. Therefore, we had 

to use aggregated public hospital data for each state and territory from annual health reports 

available on the Australian Institute of Health Welfare website. A report by the Australian 

Productivity Commission (2015b) highlighted the lack of access to healthcare data sets as a 

barrier in quantifying inefficiency in the Australian healthcare system. 

 

In general, the measurement of persistent technical inefficiency is often ignored in healthcare 

efficiency analysis. We suspect this is because no readily available software currently enables 

researchers to run models that can integrate persistent inefficiency. As a result, such analysis 

is limited to practitioners with strong programming skills. Therefore, the primary purpose of 

this paper is to fill this gap in efficiency literature both in terms of study and practice. 

 

In general, this study is novel in three ways: 

i. It undertakes first efficiency analysis that incorporates the persistent nature of 

technical efficiency while controlling for unobserved heterogeneity among 

Australian states and territories to obtain an unbiased estimate of technical 

efficiency; 

ii. It uses less utilised, but highly flexible, gamma distribution to model persistent 

inefficiency using a finite mixture stochastic frontier model; 

iii. The STAN code used in this study is made available so it can be replicated using 

other data sets in healthcare or in other sectors. 

 

2. Methodology 

While this study's estimation methodology is based on the well-developed stochastic frontier 

production model proposed by Meeusen and Van den Broeck (1977) and Aigner et al. (1977), 

this study also incorporates the finite mixture model proposed by Griffin and Steel (2008) to 

capture and separate persistent inefficiency from unobserved heterogeneity. 
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On the basis of the first application of Bayesian techniques to stochastic frontier models by van 

den Broeck et al. (1994) and Koop et al. (1995) the Markov Chain Monte Carlo (MCMC) 

simulation is used to derive the posterior moments of the model parameters. 

 

The estimation of technical efficiency requires an estimation of production or distance function. 

A translog (Christensen et al., 1973) input-distance function with multiple hospital outputs 

with an estimable form can be represented as: 
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(1) 

where 𝑇 is the number of observations for state or territory 𝑖, whereas 𝑙𝑛 𝑦𝑛𝑖𝑡 and 𝑙𝑛 𝑥𝑚𝑖𝑡 

represent the natural logarithm of quantities for outputs and inputs, respectively. The variable 

𝑥𝑚𝑖𝑡
∗ =

𝑥𝑚𝑖𝑡

𝑥𝑀𝑖𝑡
 , with 𝑥𝑀𝑖𝑡 being the normalising input imposes the linear homogeneity in inputs. 

Furthermore, 𝑙 = 1, … , 𝑇 is a linear time trend, whereas 𝑙2 captures the quadratic trend in the 

input-distance function. The variable 𝑣𝑖𝑡  ~𝑁(0, 𝜎𝑣
1) captures the stochastic noise, whereas the 

inefficiency variable 𝑢𝑖𝑡 is assumed to be gamma-distributed, i.e. 𝑢𝑖𝑡~𝐺𝑎(𝜙𝑢, 𝜆𝑢), which is 

also the measure of transient technical inefficiency. The measure of transient technical 

efficiency can be found by 𝑒𝑥𝑝(−𝑢𝑖𝑡). 

 

The variable 𝛼𝑖 in equation (1) is the mixture of time-invariant unobserved heterogeneity and 

persistence inefficiency of each state and territory which can be represented as: 

 𝛼𝑖 = 𝜌𝑖(𝛼𝑖|0, 𝜎𝛼
2) + 1 − 𝜌𝑖(𝛼𝑖|𝜙𝛼 , 𝜆𝛼) (2) 

where the variable 𝜌𝑖  ∈ (0,1) is the mixing proportion, with 𝜌𝑖~𝑏𝑒𝑡𝑎(𝛾𝜌, 𝜏𝜌). Further in 

equation (2), the first part in 𝛼𝑖~ 𝑁(0, 𝜎𝛼) controls for the state- or territory-specific 

heterogeneity whereas the second part, 𝛼𝑖~ 𝐺𝑎(𝜙𝛼, 𝜆𝛼) captures the persistent technical 

 
1 Where 𝜎 denotes standard deviation. 
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inefficiency for each state and territory. The measure of persistent technical efficiency can be 

estimated by 𝑒𝑥𝑝(−(1 − 𝜌𝑖(𝛼𝑖|𝜙𝛼 , 𝜆𝛼))). 

 

As Bayesian techniques are used to estimate model parameters in equations (1) and (2), it is 

essential to specify the complete data likelihood of the structural parameters. For succinctness, 

equation (1) is rewritten as: 

 𝑞𝑖𝑡 =  𝑝𝑖𝑡
′ 𝜷 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡 −  𝛼𝑖 , (3) 

where 𝑞𝑖𝑡 represents the dependent variable, 𝑝𝑖𝑡
′  is a row vector of the independent variables in 

equation (1) and 𝜷 is the vector of corresponding parameters, including the intercept that is to 

be estimated. If all the parameters in equations (2) and (3) are collected into a vector 𝜃 =

[𝜷, 𝜎𝑣]′, then the complete data likelihood of the structural parameters is: 

𝑝(𝒒, {𝛼𝑖}, {𝜌𝑖}, {𝑢𝑖𝑡}│𝜽, 𝑷)  = 𝑝(𝑞│{𝛼𝑖}, {𝑢𝑖𝑡}, 𝛽, 𝜎𝑣 , 𝑷) × 𝑝({𝛼𝑖}│, {𝜌𝑖})  
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(4) 

where 𝒒 and 𝑷 are the stacked vector and matrix, over both 𝑖 and 𝑡 as in equation (3) 

respectively. The symbol Γ(. ) denotes gamma function. 

 

Using Bayes' rule, the posterior density of model parameters are  

 𝜋 (𝜃, {𝛼𝑖}, {𝑢𝑖𝑡}, {𝜌𝑖}│𝒒, 𝑷) ∝ 𝑝(𝒒, {𝛼𝑖}, {𝜌𝑖}, {𝑢𝑖𝑡}│𝜽, 𝑷)   × 𝑝(𝜃) (4) 

   

We impose weakly informative priors on the parameters as follows: 

1. The priors of vectors 𝜷 is a normal density with mean zero and with a standard deviation 

of five. Similarly, for the heterogeneity part of 𝛼𝑖 the prior is 𝑁(0, 5) whereas for the 

persistent inefficiency part of 𝛼𝑖 and transient inefficiency 𝑢𝑖𝑡  is assigned a gamma 

prior with shape and scale with normal hyper priors of zero and five is used.. For the 

𝜎𝑣 a prior of 𝐺𝑎(1,1) is used. 

2. For the mixing parameter 𝜌 a beta prior with shape parameters with normal hyper priors 

with mean zero and with a standard deviation of five is used. 
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We used state-of-the-art 'No-U-Turn' Sampler (NUTS2), which is a highly efficient extension 

of the Hamiltonian Markov Chain Monte Carlo (HMCMC) algorithm, to draw samples from 

the posterior distribution. The MCMC sampling process was undertaken using RStan3, and the 

full STAN code used for modelling is provided in Appendix A3. The sampling process involves 

five independent Markov chains with each chain contributing 80,000. As NUTS is much more 

efficient in getting samples with lower autocorrelations compared to Gibbs sampling and 

Metropolis algorithm, no burn-ins or thinning of chains is required (Stan Development Team, 

2020). 

 

3. Data and descriptive statistics 

Data for this study included balanced panel data for the period 2002-2018 on public hospitals 

for six Australian states4 and two territories5 on outputs, labour inputs, capital input and non-

salaried costs. The outputs are proxied by the number of separations and outpatient services. 

The labour inputs include average full-time equivalents (FTEs) counts of medical officers, 

nurses, diagnostic and allied staff, administrative and clerical staff, and personal care staff. The 

FTEs of nurses, diagnostic and allied staff, administrative and clerical staff, and personal care 

staff are aggregated based on their respective proportion of the total labour expenditure. This 

is consistent with the classic assumption that a cost-minimising firm pays its staff according to 

their marginal products. 

 

In terms of capital inputs, the commonly used proxy in the healthcare literature is the number 

of hospital beds (see, for example, studies by Aletras et al. (2007), Herr (2008), Cozad and 

Wichmann (2013), Asmild et al. (2013) and Mitropoulos et al. (2015)). Therefore, the average 

number of public hospital beds for each state and territory is used as a proxy for capital input. 

Further, to account for non-labour expenditure, a measure of all other clinical and day-to-day 

running costs are also included in the study. The full definition of all the variables and the 

corresponding summary statistics are displayed in Table 1. 

 

 
2 Hoffman and Gelman (2014). 
3 Stan Development Team (2018). RStan: The R interface to Stan. R package version 2.17.3. http://mc-stan.org 
4 Includes New South Wales, Queensland, South Australia, Tasmania, Victoria and Western Australia. 
5 Includes Australian Capital Territory and Northern Territory. 
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4. Empirical results and discussion 

Before the estimation of the translog cost function, the data is normalised by its geometric mean 

to allow the interpretation of parameters associated with the first-order terms directly as 

distance elasticities. The homogeneity restriction on inputs in the translog input-distance 

function is imposed by dividing all the inputs by the medical officer FTE (𝑚𝑒𝑑) counts. In 

Table 2, the posterior means, standard deviations and 95% credible interval are displayed for 

all the parameters of the estimated translog input-distance function. The trace plot of HMCMC 

associated with the first-order parameter and the standard deviation are displayed in Appendix 

A2. The trace plot shows that the chains have mixed well, which suggests that the sample 

generated from the HMCMC algorithm is sufficient to provide an accurate approximation of 

the target distribution. 

 

The first-order parameters displayed in Table 2 show that the sign of input parameters have 

expected signs. The posterior mean of separations and outpatients add up to -0.31, which is 

also the scale elasticity of the input-distance function. The estimated scale elasticity implies 

that a 1% increase in all inputs results in approximately a 3.2 % increase in the number of 

separations and outpatients in state and territory hospitals. The first order coefficient of time 

(trend) is -0.02, which translates to the technological progress of 2% among Australian public 

hospitals. 

 

In order to check how well the fitted model compares to the observed dependent variable, a 

posterior predictive check (Gelman & Hill, 2006) is undertaken where we simulate 10,000 

samples from the posterior predictive distribution. The plot of the simulated samples and 

observed dependent variable is displayed in Appendix A3, which suggests that the fitted model 

compares well to the observed dependent variable. 

 

In Table 3, the average transient and persistent technical efficiency scores for each state and 

territory are ranked according to their performance. The average transient technical efficiency 

stands at 0.95; however, persistent technical efficiency is significantly low, with an average of 

0.50. As a result of higher persistence in technical inefficiency, the total6 average technical 

efficiency is pulled down to an average of 0.47. Therefore, the inefficiency in the Australian 

 
6 Total technical efficiency score is obtained by the product of transient and persistent technical efficiency as 

shown in Kumbhakar et al. (2015). 
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public hospital system appears to be persistent rather than transient. According to Colombi et 

al. (2017), in the healthcare sector the existence of persistent technical inefficiency points 

towards long-run moral hazards such as substandard infrastructure, labour rigidity (lower 

standard of human capital) and inefficient internal organisation. 

 

A report by the Australian Productivity Commission (2015b) highlighted the existence of 

substantive duplicative and irrelevant healthcare intervention along with restrictions on 

healthcare professionals. Various organisations including the Commonwealth, state and 

territory governments, and non-government sectors are responsible for service provision, 

funding, policy and regulation of health care in Australia. The fragmented and complexity of 

the Australian health system has resulted in duplication, waste, and gaps in service delivery, 

cost shifting among multiple parties and difficulty in reforming the sector (Australian 

Productivity Commission, 2015a). These are potentially the driving forces behind the high 

inefficiency observed in our study and increases in healthcare expenditure observed in 

Australia over the past few decades (Australian Institute of Health and Welfare, 2019). 

 

Further, the state/territory level analysis of the efficiency scores in Table 3 shows that there is 

a substantial inefficiency gap between the top and the lowest performers. The top three states 

– Western Australia, Victoria and Tasmania – have technical efficiency that ranges between 

0.77-0.60. However, the bottom five – Queensland, South Australia, Northern Territory, New 

South Wales and Australian Capital Territory – posted an average score between 0.29-0.38. 

This suggests that these bottom-performing states and territories have operated with a very high 

amount of persistence in technical inefficiency between 2002-2018. Reducing the level of 

persistence in inefficiency would lead to greater access to hospital care, better health outcomes 

and higher quality of care for a given level of public funding. It would be of immense assistance 

to policymakers and regulators to assess the persistent technical efficiency of individual 

hospitals in these lowest-performing states and territories. 

 

5.  Conclusion and policy implications 

In conclusion, this research is the first in Australian healthcare literature to introduce the 

measurement of persistent technical inefficiency along with transient inefficiency to gain an 

understanding of the form of inefficiency that most requires policymakers' attention. The 

results highlight the fact that the inefficiency among Australian public hospitals is persistent 

rather than transient. This requires a thorough look at the existing funding models and/or 
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regulations that may be driving persistence in inefficiencies among public hospitals. Although 

the reduction of persistent inefficiency is a long-term goal, the identification of persistent 

inefficiency and its source is key to the provision of sustainable public hospital services in 

Australia.  

 

Finally, we hope that the findings of this paper will attract the attention of the Australian public 

authorities, who will then be more willing to share detailed data, especially at the provider 

level. This would then facilitate more rigorous research and thereby provide significantly more 

insight into efficiency performance and allow researchers to provide more detailed  policy 

implications. 
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TABLES 

Table 1 

Summary statistics of variables 

Variable Description†  Statistics  

Labour inputs (FTEs)   

Medical officers (med) Refers to medical officers employed by the hospital on 

a full-time or part-time salaried basis. This excludes 

visiting medical officers engaged on an honorary, 

sessional or fee-for-service basis. This category 

includes salaried medical officers who are engaged in 

administrative duties. 

Minimum  235.00 

Maximum  13,614.00 

Mean  3,799.41 

Standard deviation 3,586.67 

Nurses & other staff (nur_other_staff) This includes the weighted FTE measure of nurses, 

diagnostic and allied health professionals, 

administrative and clerical staff, and domestic and other 

personal care staff. 

Minimum  1,077.84 

Maximum  98,749.76 

Mean  25,678.31 

Standard deviation 24,918.63 

Capital and other inputs    

Average number of beds (beds) Refers to the average number of beds immediately 

available for use (with staffing). 

Minimum  358.00 

Maximum  21,253.00 

Mean  7,106.28 

Standard deviation 6,520.40 
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Non-salary expenditure§ (other_exp) Includes payments to visiting medical officers, 

superannuation, drug supplies, medical and surgical 

supplies, food supplies, domestic services, repairs and 

maintenance, patient transport, administrative 

expenses, interest, lease costs, other on-costs and other 

recurrent expenditure. 

Minimum  64.25 

Maximum  11,747.73 

Mean  2,342.50 

Standard deviation 2,719.50 

Outputs    

Case-mix adjusted separations (separations) The total number of episodes of care (also 

hospitalisations) for admitted patients, which can be 

total hospital stays (from admission to discharge, 

transfer or death) or portions of hospital stays 

beginning or ending in a change of type of care. The 

separations are case mix adjusted by taking the product 

of total separations and average cost weight. 

Minimum  45,739.46 

Maximum  1,972,644.00 

Mean  630,127.70 

Standard deviation 585,259.40 

Outpatients occasions of service (outpatients) A distinct visit to a hospital or outpatient clinic where 

treatment is received without being admitted. As a 

person may visit an outpatient clinic in a hospital more 

than once in a year, the number of occasions of service 

is not the same as the number of people treated in 

outpatient clinics 

Minimum  190,500.00 

Maximum  28,100,000.00 

Mean  5,010,165.00 

Standard deviation 5,815,371.00 

† Based on the definition provided in the Australian Institute of Health and Welfare (2020).  

§ Reported in millions of Australian Dollars and deflated by the national-level producer price index for Medical & surgical equipment manufacturing sector available at Australian Bureau of Statistics 

(2020). 

 

  



15 
 

Table 2  

Posterior means and structural parameters 

Variable  Posterior 

Mean  

Standard 

Deviation 

95% credible interval 

log_separations -0.26 0.09 [-0.42, -0.08] 

log_outpatients -0.05 0.02 [-0.09, -0.01] 

log_nur_other_staff  0.42 0.07 [0.27, 0.57] 

log_other_exp 0.07 0.03 [0.01, 0.12] 

log_beds 0.63 0.06 [0.51,0.75] 

log_nur_other_staff × log_other_exp 0.23 0.26 [-0.28,0.72] 

log_nur_other_staff × log_beds -0.82 0.53 [-1.87, 0.20] 

log_nur_other_staff × log_separations 0.27 0.16 [-0.05, 0.59] 

log_nur_other_staff × log_outpatients -0.28 0.15 [-0.57, 0.00] 

log_nur_other_staff 2 -1.18 0.86 [-2.82, 0.53] 

log_other_exp × log_beds 0.04 0.23 [-0.41, 0.49] 

log_other_exp × log_separations -0.17 0.07 [-0.32, 0.03] 

log_other_exp × log_outpatients 0.08 0.06 [-0.04, 0.20] 

log_other_exp 2 -0.27 0.21 [-0.68, 0.14] 

log_beds × log_separations 0.22 0.18 [-0.13, 0.57] 

log_beds × log_outpatients -0.08 0.17 [-0.42, 0.25] 

log_beds 2 2.52 0.33 [1.87,3.17] 

log_separations × log_outpatients 0.04 0.05 [-0.07, 0.14] 

log_separations 2 -0.23 0.10 [-0.43, -0.03] 

log_outpatients 2 0.01 0.05 [-0.08, 0.11] 

trend 0.02 0.00 [0.01, 0.03] 

trend2 0.002 0.00 [0.00, 0.004] 
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trend × log_separations  -0.04 0.01 [-0.06, -0.01] 

trend × log_outpatients 0.02 0.01 [0.00, 0.04] 

trend × log_nur_other_staff 0.12 0.03 [0.07, 0.17] 

trend × log_other_exp -0.02 0.02 [-0.06, 0.02] 

trend × log_beds -0.16 0.03 [-0.21, -0.11] 

constant 1.97 0.56 [0.67, 2.97] 

Standard deviation    

𝝈𝒗 0.02 8.9 × 10-3 [0.003, 0.03] 

log posterior density (Vehtari & Ojanen 

2012) 

50.33   
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Table 3 

Estimates of average technical efficiency scores 

State/Territory 
Technical Efficiency 

Rank 
Transient Persistent Total 

Western Australia 0.95 0.82 0.77 1 

Victoria 0.95 0.72 0.67 2 

Tasmania 0.94 0.64 0.60 3 

Queensland 0.95 0.40 0.38 4 

South Australia 0.95 0.41 0.38 4 

Northern Territory 0.94 0.34 0.32 5 

New South Wales 0.95 0.33 0.31 6 

Australian Capital Territory 0.94 0.30 0.29 7 

Grand Mean 0.95 0.50 0.47  
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Appendix 
A1 

Stan Code  

data { 

int<lower=0> N; // Number of observations 

int<lower=0> J; // Number of groups 

int<lower=0> P; // Number of independent variables  

real Y[N]; // vector of dependent variables 

matrix [N, P] X; // matrix of independent variables 

int<lower=1, upper=J> state_id [N]; // vector specifying states and territories 

} 

parameters { 

real<lower=0> sigma; 

vector[P] beta; 

real alpha; 

vector[J] r; // vector of the variable that is a mixture of random effects and persistent technical inefficiencies  

vector<lower=0, upper=1>[J] mix; // vector of mixing parameter  

vector <lower = 0>[N]u; // vector of variable that captures transient technical inefficiencies             

} 

transformed parameters { 

vector [N] yhat; 

yhat =alpha + X*beta-u -r[state_id]; 

} 

model { 

 

// Priors 

sigma~ gamma (1,1); 

alpha ~ normal (0,5); 

beta ~ normal (0,5); 

u~ gamma (4,2); 

mix ~ beta (4,3); 

 

//Likelihoods 

for (j in 1: J) { 

  target += log_mix(mix[j], 

                    normal_lpdf(r[j] | 0,5), 

                    gamma_lpdf(r[j] |4,2)); // likelihood that specifies the mixture components 

} 

target += normal_lpdf (Y| yhat, sigma); // likelihood that specifies the input distance function                

} 

 

generated quantities { 

vector[J] PE; // vector that collects persistent technical efficiency 

vector[N] y_predict; // vector of data that could be used for posterior predictive checks 

vector[N] log_lik; // vector of log-likelihood values 

vector[N] TE; //vector that collects transient technical efficiency 

for (j in 1: J) 

PE[j] = exp (-((1-mix[j]) *r[j])); 

for (i in 1: N) { 

y_predict[i] = normal_rng (alpha + X[i]*beta-u[i]-r[state_id[i]], sigma); 

log_lik[i] = normal_lpdf(Y[i] |alpha + X[i]*beta-u[i] -r[state_id[i]], sigma); 

TE[i] = exp(-u[i]); 

} 

} 
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A2 

Trace plot of first-order parameters and standard deviation  
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A3 

Posterior Predictive Plot 

 




