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Abstract

Scalability refers to the existence of a utility scale on alterna-
tives, with respect to which binary choice probabilities are suitably
monotone. This is a fundamental concept in psychophysical theory
(Falmagne, 1985). We introduce a new notion of scalability which
we call strict scalability, and establish axiomatic foundations for this
concept. Strict scalability lies between the classical notion of simple
scalability, which was axiomatised by Tversky and Russo (1969), and
the weaker notion of monotone scalability, which was axiomatised by
Fishburn (1973). When the set of alternatives is countable, a binary
choice probability is strictly scalable if and only if it satisfies the fa-
miliar condition of weak substitutability.

1 Introduction

These notes explore the axiomatic foundations of classical representations of
binary choice probabilities. In Part I, we examine scalability —the existence
of a utility scale on alternatives, with respect to which binary choice proba-
bilities are suitably monotone. Our primary purpose is to fill an unnoticed
gap between the characterisations of monotone scalability by Fishburn (1973)
and simple scalability by Tversky and Russo (1969). Between these two no-
tions lies what we call strict scalability. A binary choice probability is strictly
scalable if it is monotone scalable via a utility function that represents (in the
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usual sense) the associated stochastic preference relation.1 When alternatives
are drawn from a countable set, we show that binary choice probabilities are
strictly scalable if and only if they satisfy the well-known strong stochas-
tic transitivity condition —equivalently, the weak substitutability condition
(Davidson and Marschak, 1959). Given the importance of these equivalent
axioms in the literature on probabilistic choice, it is useful to understand
their implications for the representation of binary choice probabilities.
In Part II, we study the axiomatic foundations of Fechnerian representa-

tions.

2 Binary choice probabilities

A complete binary choice specification (CBCS) is a pair (A,P ), where A is
a non-empty set of alternatives and P is a binary choice probability (BCP).
The latter is a mapping

P : A× A→ [0, 1]

that satisfies
P (a, b) = 1− P (b, a) (1)

for all a, b ∈ A. Hence, by definition,

P (a, a) =
1

2

for any a ∈ A. If a 6= b, then P (a, b) is the probability (frequency) with
which the decision-maker selects a when (given repeated opportunities of)
choosing between a or b, abstention not being an option.
If A is finite, we can let A = {a1, a2, ..., an} so that P corresponds to the

matrix

P =


P (a1, a2) P (a1, a2) · · · P (a1, an)
P (a2, a1) P (a2, a2) · · · P (a2, an)

...
...

. . .
...

P (an, a1) P (an, a2) · · · P (an, an)

 (2)

This matrix satisfies P + P T = 1, where 1 is a matrix with 1 in every cell.
The “completeness”qualifier refers to the fact that the domain of P is

the entire Cartesian product A × A, so the domain of the CBCS can be
characterised by the set of alternatives, A. For a CBCS it is conventional to
consider representations in terms of a utility function, u : A → R, defined

1We say that one alternative is weakly stochastically preferred to another if the former
is chosen over the latter with probability at least 12 .

2



on alternatives —see Section 3. The best known such representation is the
classical Fechner model, in which P (a, b) is a non-decreasing function of the
utility difference u (a)− u (b) for some suitable choice of utility scale.
More generally, one might imagine a BCP defined on some subset B ⊆

A× A. Consider, for example, the set

∆ (A,P ) = {(a, b) ∈ A× A | 0 < P (a, b) < 1} .

If (a, b) ∈ ∆ (A,P ) then neither alternative is absolutely preferred to the
other (Davidson and Marschak, 1959, Definition 1). Some analyses restrict
attention to CBCS’s defined on ∆ (A,P ), or assume that ∆ (A,P ) = A× A
(see, for example, Davidson and Marschak, 1959; Tversky and Russo, 1969).
One rationale for such a restriction is to avoid a well-known problem

with classical Fechner models. These models cannot explain the absolute
preference for a dominating option over a transparently dominated alterna-
tive (Luce and Suppes, 1965, p.334). Dominance induces absolute preference
irrespective of utility differences.
Nevertheless, we study complete BCPs without assuming that∆ (A,P ) =

A×A, since we do not wish to exclude scenarios in which absolute preference
arises for reasons which can be adequately captured by utility differences. At
a formal level, if there exist pairs (a, b) ∈ A×A with transparent dominance
relationships, then we assume that (A,P ) describes a hypothetical extension
of P : B → [0, 1] for some B ⊂ A × A which excludes such pairs (as is
often done in experimental settings). For example, if there is a Fechner
model for P : B → [0, 1], then this model can be used to obtain the desired
extension. Note, however, that many of the properties of P used in our
analysis implicitly impose a minimal degree of completeness on B. One
should be alert to steps in proofs which rely upon the existence of particular
elements from A× A in B.
Given P , it is natural to impute the following stochastic preference rela-

tion on A: for any a, b ∈ A,

a %P b ⇔ P (a, b) ≥ P (b, a) ⇔ P (a, b) ≥ 1

2
(3)

where the second equivalence follows from (1). In other words, a is “weakly
stochastically preferred”to b iff the decision-maker chooses a over b at least
half of the time. The asymmetric and symmetric parts of %P are denoted
�P and ∼P respectively, and satisfy

a �P b ⇔ P (a, b) >
1

2
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and
a ∼P b ⇔ P (a, b) =

1

2
.

Note that %P is complete by construction but need not be transitive. It will
be transitive iff (A,P ) satisfies “weak stochastic transitivity”:

Definition 1 A CBCS satisfies weak stochastic transitivity (WST) if

min {P (a, b) , P (b, c)} ≥ 1

2
⇒ P (a, c) ≥ 1

2

for all a, b, c ∈ A.

Fishburn (1973) introduced another useful binary relation that can be
constructed from P :

a %P0 b ⇔ P (a, c) ≥ P (b, c) for any c ∈ A (4)

It is clear that %P0 is transitive, though it need not be complete. Fishburn
(1973, Theorem 1) proves that it is complete iff P satisfies a condition he
calls weak independence (Definition 11 below), which is logically independent
of WST —see Fishburn (1973, Figure 1). Even if P satisfies WST and weak
independence, so that %P and %P0 are both weak orders, it need not be the
case that %P=%P0 (Corollary 22). A necessary and suffi cient condition for
these two binary relations to coincide will be provided later (Corollary 20).

3 Representations

“Scalability”refers (loosely speaking) to the possibility of representing binary
choice probabilities using a “utility scale”defined on the set of alternatives.
The following definitions describe three increasingly demanding notions of
scalability.

Definition 2 A CBCS satisfies monotone scalability (MS) if there ex-
ist functions u : A → R and F : u (A) × u (A) → [0, 1] such that F is
non-decreasing (respectively, non-increasing) in its first (respectively, second)
argument, and

P (a, b) = F (u (a) , u (b))

for all a, b ∈ A. In this case, we say that (A,P ) is monotone scalable
through (u, F ).
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Definition 3 A CBCS satisfies strict scalability (StS) if there exists a
function u : A → R and a function F : u (A) × u (A) → [0, 1] that is
non-decreasing (respectively, non-increasing) in its first (respectively, second)
argument, such that u represents %P (i.e., a %P b iff u (a) ≥ u (b) for any
a, b ∈ A) and

P (a, b) = F (u (a) , u (b))

for all a, b ∈ A. In this case, we say that (A,P ) is strictly scalable through
(u, F ).

Definition 4 A CBCS satisfies simple scalability (SS) if there exist func-
tions u : A → R and F : u (A) × u (A) → [0, 1] such that F is strictly
increasing (respectively, strictly decreasing) in its first (respectively, second)
argument, and

P (a, b) = F (u (a) , u (b)) (5)

for all a, b ∈ A. In this case, we say that (A,P ) is simply scalable through
(u, F ).

The SS concept is classical in the literature on BCPs. The MS concept is
less well-known but of long standing —it was introduced by Fishburn (1973).
The StS concept is defined for the first time here (so far as we are aware).
It rules out the possibility that there exist a, b ∈ A with u (a) > u (b) but
P (a, b) = 1

2
. In other words, it rules out imperfect utility discrimination —

the possibility that the utility difference between a and b cannot be detected
from the frequency of choices from {a, b}.
Of course, StS is still compatible with the possibility that u (a) > u (b) >

u (c) but there is no difference between the frequency with which a is chosen
from {a, c} and the frequency with which b is chosen from {b, c}. In other
words, the decision maker may not discriminate between a and b in compar-
ison with c. The SS concept imposes this “indirect discrimination”as well.
In particular, the following result verifies that StS is intermediate between
MS and SS.

Lemma 5 If (A,P ) is simply scalable through (u, F ) then u represents %P .

Proof: Since F is strictly increasing (respectively, strictly decreasing) in its
first (respectively, second) argument, we have

P (a, b) ≥ P (b, a) ⇔ F (u (a) , u (b)) ≥ F (u (b) , u (a))

⇔ u (a) ≥ u (b)

for all a, b ∈ A. It follows from (3) that u represents %P . �
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Note that (1) imposes restrictions on F in each of these representations.
If (A,P ) satisfies MS (or StS or SS), then

F (x, y) + F (y, x) = 1

for all x, y ∈ u (A). Hence, F (x, x) = 1
2
for any x ∈ u (A). The requirement

that u represents %P places an additional implicit restriction on F . For StS
to be satisfied we must have

F (x, y) > [<]
1

2
⇔ x > [<]y

for any x, y ∈ u (A) with x 6= y.
The rest of this paper examines the axiomatic foundations of these three

notions of scalability. We review known results in the case of MS and SS,
but our axiomatisation of StS is new.
Before doing so, we note that a Fechnerian representation is obtained if a

BCP is scalable and choice probabilities can be expressed in terms of utility
differences. That is, there is a utility scale u : A → R and a non-decreasing
function F : u (A)→ [0, 1] such that

P (a, b) = F (u (a)− u (b))

for all a, b ∈ A. For each of our three notions of scalability there is a Fech-
nerian analogue. (The definition just given is the analogue of MS.) The
axiomatisation of these Fechnerian models, and the axiomatic gap between
each notion of scalability and its Fechnerian cousin, are issues that we explore
in Part II of these notes.
Before proceeding to the axioms, we make a couple of observations which

will be useful in the sequel. The first is the following fact:

Lemma 6 Let (A,P ) be simply (strictly) [monotone] scalable through (u, F ).
If h : u (A) → R is strictly increasing and û = h ◦ u, then there exists an F̂
such that (A,P ) is simply (strictly) [monotone] scalable through

(
û, F̂

)
.

Proof: The condition

F̂ (x, y) = F
(
h−1 (x) , h−1 (y)

)
determines a well-defined function F̂ : û (A) × û (A) → [0, 1] which shares
the same monotonicity properties as F . Moreover, if u represents %P then
so does û. �

6



Second, if A is finite and (A,P ) is monotone scalable, then we may enu-
merate

A = {a1, a2, ..., an}
such that u (a1) ≥ u (a2) ≥ · · · ≥ u (an). The matrix (2) will then be non-
decreasing along each row (from left to right) and non-increasing down each
column (from top to bottom). This property will prove convenient, so we
assume that A has been enumerated in this fashion whenever (A,P ) is MS
and A is finite.

4 Transitivity, substitution and independence

Tversky and Russo (1969) prove that simple scalability may be characterised
by any one of three equivalent properties:2

Definition 7 A CBCS satisfies substitutability if

P (a, b) ≥ 1

2
⇔ P (a, c) ≥ P (b, c)

for all a, b, c ∈ A.

Definition 8 A CBCS satisfies strict stochastic transitivity (StST) if

min {P (a, b) , P (b, c)} ≥ [>]
1

2
⇒ P (a, c) ≥ [>] max {P (a, b) , P (b, c)}

for all a, b, c ∈ A.

Definition 9 A CBCS satisfies independence if the following holds for all
a, b, c, d ∈ A:

P (a, c) ≥ P (b, c) ⇔ P (a, d) ≥ P (b, d) .

It is obvious that substitutability and independence are identical restric-
tions on a BCP.3 The equivalence of these two with StST is less obvious, and
their mutual equivalence with simple scalability even less so.

2The “strict stochastic transitivity”terminology is from Fishburn (1973). In Tversky
and Russo (1969), “strong stochastic transitivity”is used to refer to what we have labelled
StST. Most authors use “strong stochastic transitivity”for the property that we introduce
below under the label SST. We adopt the more conventional usage.

3Set b = c in Definition 9 to observe that independence implies substitutability. For
the converse, if substitutability holds and P (a, c) ≥ P (b, c), then

P (a, b) ≥ 1

2

and hence P (a, d) ≥ P (b, d).
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Tversky and Russo (1969) assume that ∆ (A,P ) = A × A. A careful
reading of Tversky and Russo’s argument shows this restriction plays no
role, but we prove the following to keep the present analysis self-contained.

Theorem 10 Given a CBCS (A,P ), the following are equivalent:

(i) (A,P ) satisfies SS;

(ii) (A,P ) satisfies substitutability;

(iii) (A,P ) satisfies StST.

(iv) (A,P ) satisfies independence.

Proof: We first show that (i) implies (iii). Using the properties of F implied
by SS and (1), we have

min {F (u (a) , u (b)) , F (u (b) , u (c))} ≥ [>]
1

2
⇒ u (a) ≥ [>]u (b) ≥ [>]u (c)

⇒ F (u (a) , u (c)) ≥ [>] max {F (u (a) , u (b)) , F (u (b) , u (c))}

from which StST follows.
Next, we show that (iii) implies (ii). By Lemma 16, (A,P ) satisfies weak

substitutability, so we need only show the converse to the weak substitutabil-
ity implication. Suppose P (a, c) ≥ P (b, c) and P (a, b) < 1

2
. We show that

a contradiction necessarily follows. Suppose P (a, c) > 1
2
. Since P (b, a) > 1

2
,

StST gives P (b, c) > P (a, c), which is a contradiction. Suppose, instead,
that P (a, c) ≤ 1

2
. Then

1

2
≥ P (a, c) ≥ P (b, c)

which implies

P (c, b) ≥ P (c, a) ≥ 1

2
.

From P (c, b) ≥ 1
2
, P (b, a) > 1

2
and StST we deduce

P (c, a) ≥ max {P (c, b) , P (b, a)} .

Thus,

P (c, a) = P (c, b) ≥ P (b, a) >
1

2
.

Applying StST we get P (c, a) > P (c, b) which contradicts P (a, c) ≥ P (b, c).
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We now establish the equivalence of (i), (ii) and (iii) by showing that (ii)
implies (i). Since we already know that (ii) and (iv) are equivalent, this will
complete the proof. Fix some a ∈ A and define u : A → [0, 1] by u (a) =
P (a, a). Now define F : u (A)× u (A)→ [0, 1] by F (u (a) , u (b)) = P (a, b).4

Substitutability ensures that F is well-defined:

(u (a) , u (b)) = (u (a′) , u (b′)) ⇔ P (a, a′) = P (b, b′) =
1

2
⇔ P (a, b) = P (a′, b) and P (b, a′) = P (b′, a′)

⇒ P (a, b) = P (a′, b′) .

Substitutability also ensures that F has the required monotonicity properties.
To see that F is strictly increasing in its first argument, note that for any
a, a′, b ∈ A we have:

u (a) > u (a′) ⇔ P (a, a′) >
1

2
⇔ P (a, b) > P (a′, b)

⇔ F (u (a) , u (b)) > F (u (a′) , u (b)) .

Similar logic shows that F is strictly decreasing in its second argument. �

Fishburn (1973) obtains a characterisation of monotone scalability by
weakening independence as follows:

Definition 11 A CBCS satisfies weak independence if the following holds
for all a, b, c, d ∈ A:

P (a, c) > P (b, c) ⇒ P (a, d) ≥ P (b, d) .

Theorem 12 (Fishburn, 1973) A CBCS satisfies MS iff it satisfies weak
independence and there exists a utility representation for %P0 .

Fishburn (1973, Theorem 1) shows that weak independence is equivalent
to %P0 being complete (i.e., a weak order), so the additional requirement that
there exist a utility representation for %P0 is equivalent to the requirement
that A contain a countable %P0 -dense subset (ibid., pp.350-351). When A
itself is countable, this latter condition is trivially satisfied.

Corollary 13 If (A,P ) is a CBCS and A is countable, then the following
are equivalent:

4Note that Debreu (1958) uses essentially the same construction.
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(i) (A,P ) satisfies MS;

(ii) (A,P ) satisfies weak independence.

There is no known analogue of weak independence in the form of a sub-
stitutability or stochastic transitivity condition.
The results of Tversky and Russo (1969) and Fishburn (1973) raise the

obvious question of whether there is a condition intermediate in strength
between independence and weak independence that characterises strict scal-
ability? In the next section, we obtain such a condition, which turns out to
be surprisingly familiar.

5 Strict scalability

The following two concepts have a long and distinguished heritage in the
literature on BCPs.

Definition 14 A CBCS satisfies weak substitutability if

P (a, b) ≥ 1

2
⇒ P (a, c) ≥ P (b, c)

for all a, b, c ∈ A.

Definition 15 A CBCS satisfies strong stochastic transitivity (SST) if

min {P (a, b) , P (b, c)} ≥ 1

2
⇒ P (a, c) ≥ max {P (a, b) , P (b, c)}

for all a, b, c ∈ A.

It is well known that these two concepts are in fact equivalent.5

Lemma 16 (Davidson and Marschak, 1959) A CBCS satisfies SST iff
it satisfies weak substitutability.

Proof: Let (A,P ) be a CBCS that satisfies SST and let P (a, b) ≥ 1
2
. If

P (b, c) ≥ 1
2
then P (a, c) ≥ P (b, c) by SST. Suppose P (b, c) < 1

2
, and hence

P (c, b) > 1
2
. If P (a, c) ≥ 1

2
then P (a, c) ≥ P (b, c) by SST. If P (a, c) < 1

2
,

then P (c, a) > 1
2
so P (c, b) ≥ P (c, a) by SST and hence P (a, c) ≥ P (b, c).

5Davidson and Marschak, like Tversky and Russo, restrict attention to CBCS’s with
∆ (A,P ) = A × A, so we include a version of their proof to verify that this restriction
plays no role.
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Conversely, suppose (A,P ) satisfies weak substitutability and

min {P (a, b) , P (b, c)} ≥ 1

2
.

Then P (a, c) ≥ P (b, c) and P (b, a) ≥ P (c, a). The latter implies P (a, c) ≥
P (a, b). �

The next example shows that weak substitutability is strictly weaker than
substitutability.

Example 17 We adapt an example from Luce and Suppes (1965, p.346).
Let A = {a1, a2, a3} and specify P as follows:

1

6

 3 4 4
2 3 4
2 2 3

 .
Note that a1 �P a2 �P a3 in this example. Thus, weak substitutability re-
quires that

P (ai, ak) ≥ P (aj, ak) for all k

whenever i ≤ j. That is, if P is the matrix representation for P , and P k,·
denotes the kth row of P , then weak substitutability requires P i,· ≥ P j,·
whenever i ≤ j. It is clear that this is the case. However, substitutability is
violated: P (a2, a1) = P (a3, a1) but P (a2, a3) >

1
2
.

It is also obvious that weak substitutability implies weak independence.6

Example 21 below shows the converse to be false.
From Theorem 10 and Lemma 16 we therefore have the following (well

known) relationships, with neither of the omitted converses being valid:

weak independence ⇒ weak substitutability ⇔ SST

⇒ substitutability ⇔ StST ⇔ independence.

It will be convenient to introduce one further substitution property.

Definition 18 A CBCS satisfies quasi-substitutability if the following
holds for all a, b ∈ A:

P (a, b) ≥ 1

2
⇔ [P (a, c) ≥ P (b, c) for all c ∈ A]

6The former rules out the possibility that there exist a, b, c, d ∈ A with

P (a, c) > P (b, c) and P (a, d) < P (b, d) .
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Thus, (A,P ) satisfies quasi-substitutability iff%P=%P0 .
Quasi-substitutability appears to be strictly intermediate between weak

substitutability and substitutability, but is actually equivalent to the former.

Lemma 19 A CBCS satisfies quasi-substitutability iff it satisfies weak sub-
stitutability.

Proof: The “only if” part is obvious. For the “if” part, suppose (A,P )
satisfies weak substitutability and P (b, a) > 1

2
. We must show that P (a, c) <

P (b, c) for at least one c ∈ A. Weak substitutability ensures that P (b, c) ≥
P (a, c) for all c ∈ A. If equality holds for all c ∈ A then

P (a, b) = P (b, b) =
1

2

which contradicts P (a, b) < 1
2
. �

Corollary 20 A CBCS satisfies %P=%P0 iff it satisfies weak substitutability.

Since completeness of %P0 is equivalent to weak independence, and tran-
sitivity of %P is equivalent to WST, it follows that weak substitutability
implies both weak independence (since %P0 must be complete if %P=%P0 )
and WST (since %P must be transitive if %P=%P0 ). Example 21 establishes
that the converse is false. That is, even if %P0 and %P are both weak orders,
it need not be the case that %P=%P0 .

Example 21 Let A = {a1, a2, a3} and specify P as via the following matrix
(denoted P ):

1

12

 6 9 8
3 6 6
4 6 6

 .
We have a1 �P a2, a2 ∼P a3 and a1 �P a3 so P satisfies WST. It is also
clear that P i,· ≥ P j,· or P j,· ≥ P i,· for any i, j, so P satisfies weak indepen-
dence. However, weak substitutability is violated: P (a2, a1) < P (a3, a1) but
P (a2, a3) = 1

2
.

Combining the foregoing observations with Lemma 16 we have:

Corollary 22 For any CBCS, SST implies both WST and weak indepen-
dence, but not conversely (i.e., the conjunction of WST and weak indepen-
dence does not imply SST).
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Fishburn (1973) proves that SST implies weak independence but not con-
versely —see his Figure 1 —but the stronger result established here has not,
to the best of our knowledge, been observed previously.
We can now prove our main result.

Theorem 23 A CBCS satisfies StS iff it satisfies weak substitutability and
there exists a utility representation for %P .

Proof: Let (A,P ) be strictly scalable through (u, F ). In particular, u rep-
resents %P . Then

P (a, b) ≥ 1

2
⇒ u (a) ≥ u (b)

⇒ F (u (a) , u (c)) ≥ F (u (b) , u (c)) for all c ∈ A
⇒ P (a, c) ≥ P (b, c) for all c ∈ A

where the second implication uses the fact that F is non-decreasing in its
first argument. Hence, (A,P ) satisfies weak substitutability.
Next, suppose (A,P ) satisfies quasi-substitutability (which is equivalent

to weak substitutability —Lemma 19) and let u : A→ R be a representation
for %P . Then:

u (c′) ≥ u (c) ⇔ P (c′, c) ≥ 1

2
⇔ P (c′, d) ≥ P (c, d) for any d ∈ A
⇔ P (d, c) ≥ P (d, c′) for any d ∈ A.

and hence

u (c′) = u (c) ⇔ P (c′, d) = P (c, d) for any d ∈ A
⇔ P (d, c) = P (d, c′) for any d ∈ A.

It follows that the condition

F (u (a) , u (b)) = P (a, b)

determines a well-defined function F : u (A)×u (A)→ [0, 1] with the required
monotonicity properties. �

Given weak substitutability, which implies WST, the existence of a utility
representation is equivalent to A containing a countable %P -dense subset,
which is trivially satisfied for countable A.
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Corollary 24 If (A,P ) is a CBCS and A is countable, then the following
are equivalent:

(i) (A,P ) satisfies StS;

(ii) (A,P ) satisfies weak substitutability;

(iii) (A,P ) satisfies SST.

Interestingly, if A is not countable, then (A,P ) may satisfy weak sub-
stitutability but fail to satisfy even monotone scalability. Fishburn (1973,
p.351) constructs a CBCS (A,P ) that is not monotone scalable. In partic-
ular, the binary relation %P0 does not possess a utility representation. It is
straightforward to observe that %P=%P0 for Fishburn’s example, from which
we deduce that (A,P ) satisfies weak substitutability (Corollary 20).

6 Discussion

Figure 1 summarises the relationships described in this paper. It uses the
same conventions as Fishburn (1973, Figure 1). Conditions within a single
box are equivalent. If an arrow points in only one direction it means that
the converse implication is false. If there is no path from one box to another
via a series of arrows then the two conditions are logically independent. The
implied relationships within and between dashed boxes were already estab-
lished by previous authors (with the exception of the equivalence between
weak substitutability and %P=%P0 ).
Our main contribution can be viewed from two perspectives. From one

perspective, our contribution is to establish axiomatic foundations for strict
scalability. The notion of strict scalability occupies a natural intermediate
position between monotone and simple scalability. In Ryan (2015) we in-
troduced a similar variant on standard Fechnerian representations. Alterna-
tively, when A is countable, our contribution may be viewed as establishing
a convenient representation for any BCP that satisfies the familiar weak sub-
stitutability condition.
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Figure 1: Red arrows apply only if A is countable
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