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ABSTRACT: Data fusion is used today in many
engineering and managerial applications to help
resolve complex planning, control and optimisation
problems. The purpose of this paper is to introduce
practical and versatile tools and an environment for
implementing data fusion that also provides a reverse-
engineering methodology to extract comprehensible
rules developed from the data. The environment has
two major tools (among several others) - a fuzzy
neural network FuNN, and evolving fuzzy neural
network EFuNN applicable for both off-line and on
line adaptive learning and rule manipulation. The
EFuNNs allow for on-line fusion of variables over
time sequences of information through adaptive
learning. Two case study time-series applications are
presented and discussed: a water flow prediction and
a provisional robot control example.

Keywords: Decision-making, On-line Prediction,
Fuzzy Neural Networks, Evolving Fuzzy Neural
Networks, Rule Extraction.

1. Introduction

While artificial neural networks (ANN) per se
can provide the ability to produce a model for the
mechanisms underlying the information in
sources data used in decision-making and time-
series prediction processes, hybrid neuro-fuzzy
systems that include both learning from data and
fuzzy rules manipulation, add much more to this
useful property [1, 8, 16, 17]. Many past data
fusion applications have utilised ad hoc designs
at some level in the decision-making process to
include explicit information or a priori
knowledge constraints, and a structure to assist in
highly dynamic applications or poorly defined
problem solutions. This capability has been made

available in the fuzzy neural network structures
and in the hybrid connectionist-based
environments described here.

One particular example for combining neural
networks and fuzzy systems is the concept of
fuzzy neural networks (FNN) [17, 8]. By
fuzzifying a neural network, the quantisation of
the inputs and outputs, through the application of
membership functions, extra robustness is
provided when used with redundant, noisy or
incomplete input data. Further, this fuzzification
technique can provide the means for extracting
the information learnt in the form of rules. It is
also now possible to add explicit information or a
priori knowledge constraints to the network and
thereby improve the interpretation of the rules
learnt by the network, after training.

Here, two types of FNNs are illustrated as part of
a hybrid software environment: the fuzzy neural
network FuNN [8-11], used for off-line learning
rule manipulation, and the evolving fuzzy neural
network EFuNN [12-14] used for on-line real
time learning and prediction.

Since the paradigm of hybrid connectionist-rule
based systems was established [6] there are now
several software environments that implement
this paradigm. The first generation of such
environments (see for example COPE [7])
implemented in a logical way, different types of
ANN (such as multi-layer perceptrons, Kohonen
self-organising maps [15], adaptive-resonance
theory ANN [1]), to be combined with the
CLIPS-based production systems. Here, an ANN
could be called for training, or for recall of the



action part of the production rules [6, 7]. The
second generation of such environments included
fuzzy rules and fuzzy neural networks. Such an
environment was FuzzyCOPE [8]. This new data
fusion environment further developed the main
principles of COPE [7] through a combination of
the Fuzzy-CLIPS (an extension of CLIPS)
developed by the NRC in Canada in 1994,
http://ai.iit.nrc.ca/fuzzy/fuzzy.html and fuzzy
inference and fuzzy-neural network modules at
http://divcom.otago.ac.nz/com/infosci/KEL/home.htm.

The latest development in the series of
FuzzyCOPE environments, FuzzyCOPE/3,
allows for the extraction of a more
comprehensible interpretation of the underlying
rules implicit in the data used in training.  It also
has a module (EFuNN) for on-line learning where
the inputs (sources of information) are not pre-
defined and can vary during the on-line learning
process, thus allowing for "on the fly" fusion of
different sources of information and fuzzy rules.

2. The Fuzzy Neural Network

Fuzzy neural networks (FNNs) are connectionist
models for fuzzy rules implementation and
inference [8-11, 17]. However, there are a wide
variety of architectures and functionality,
differing in the type of fuzzy rules, type of
inference method, and modes of operation. In
general the architecture of these FNNs consist of
five layers, Fig. 1. These layers in order are:
A. An input layer, where the neurones represent

the linguistic variables of the input data;
B. A fuzzification, or condition layer, where the

neurones represent the fuzzy values;
C. A rules layer, where the neurones represent

the fuzzy rules;
D. An action layer, where the neurones represent

the fuzzy values of the output variables, and
finally;

E. An output layer, where the neurones
represent the output linguistic variables.

The example illustrated in Fig.1 has two inputs,
with two fuzzy membership functions (MF) each,
two rule nodes, and two outputs, again with two
MF each.

Figure 1: A general structure of a fuzzy neural
network

FuNN is a FNN developed and presented in [8-
11]. It is characterised by the following features:
using weighted fuzzy rules [8]; modified back-
propagation algorithms for training that include
training with forgetting; using genetic algorithms,
to improve and speed up training [2]; training
with or without modifying the membership
functions [11]; different types of rule extraction
(e.g. simple fuzzy rules, weighted fuzzy rules,
aggregated rules [10,11]); and rule insertion.

FuNNs have four basic advantages over ANNs
(and standard fuzzy systems):
1. The FuNN structure is interpretable by fuzzy

linguistic "if-then" rules – not so readily
achieved for ANNs;

2. A FuNN is more likely to converge to a
global minimum in error-weight space under
arbitrary conditions, than an ANN;

3. FuNNs show a remarkable improvement in
learning speed and accuracy compared to an
equivalent ANN;

4. A FuNN can learn to predict signal variation
well, even if it is of a chaotic signal type.

Usually, the FuNNs employ standard triangular
membership functions and the number of rule
nodes and rules are defined and fixed by the
analyst prior to initialisation. However, FuNNs
do have some difficulties when applied to on-line
modelling and prediction [5], but these can be
overcome by the evolving FuNNs as described
below.
3. Evolving Fuzzy Neural Networks

Evolving fuzzy neural networks (EfuNNs) were
introduced in [12-14]. In this extension of the



FuNN architecture, the network begins with an
empty rule layer. As training patterns are
presented to the network, examples that are not
adequately represented by the rule layer, trigger
the addition of nodes to represent these new
examples. Each rule node, after training,
therefore represents one or several training
examples.

EFuNNs have the following characteristics:
• Memory-based learning where exemplars of

data are stored as they arrive at the inputs;
• Open structure – the number of the inputs and

the outputs of the EFuNN can vary from
example to example thus making fusion from
an unknown number of sources possible in an
on-line, "on the fly" mode, and;

• Local tuning of connection weights [12-14].

EFuNNs also exhibit the following advantages
over conventional FuNNs:
• Rapid, one pass training;
• Good generalisation capability, both local

and global;
• Robustness to forgetting, and;
• Rapid adaptation to new data.

4. The Hybrid Environment FuzzyCOPE/3

FuzzyCOPE/3 is a suite of data processing and
neural network tools for the Microsoft Windows
environment. FuzzyCOPE was developed by the
Knowledge Engineering Laboratory of the
Department of Information Science at the
University of Otago. It consists of a graphical
user interface built on top of a computational
engine. The engine, which is encapsulated within
a dynamic link library (DLL), is actually a simple
command interpreter capable of creating and
manipulating multiple instances of various
classes of objects. These include data sets, multi-
layer perceptrons, self-organising maps, and
different types of fuzzy neural networks.
Communication between the interface and engine
is via customised formatted commands and result
strings. These strings are assembled and parsed
by specially written Application Programming
Interface (API) libraries. This approach was
adopted for maximum flexibility: it eliminates
problems with handling C++ style pointers, it

avoids problems with passing data in proprietary
formats, it simplifies use of the engine (only the
API library functions need be considered at the
application level) and it lends itself readily to
future expansion, such as a possible client-server
architecture, or even the implementation of a
specialised programming language. The
FuzzyCOPE/3 environment is currently being
used by more than 35 universities from all over
the world as a teaching environment for courses
in computational intelligence. There are also
more than 200 developers of intelligent
information systems using it. The environment is
available from the web site at
http://kel.otago.ac.nz/software/FuzzyCOPE3/

5. Case Study I - Water Flow Prediction

5.1 The Problem

This first example problem chosen for this paper
was that of water flow prediction to a sewage
plant (see also [8]). Given the time of day t, (0 -
23), whether or not it is a holiday (0 or 1), and the
water flow over the past few hours (t-1, t-2 etc.),
the task is to predict the water flow for the next
hour. This is a time-series prediction problem
useful for resource management. Accurate
prediction of the water flow is necessary to allow
for finer control of the sewage plant process.

The data is highly variable, with large differences
between the hourly water flow for a workday as
compared to a holiday. An extract of the data,
shown in Fig.2, demonstrates the typical
difference between holiday (dotted line) and
workday (solid line) flows.

5.2 Experimental Data Sets

Two data sets, a training set and a testing set,
were prepared. Each data set contained four input
variables and one output variable. The input
variables represented the time of day, whether or
not it was a holiday, and the water flow over each
of the two preceding time intervals. There were
503 examples in the training set, 176 examples in
the test set. Due to the requirements of the FuNN
and EFuNN architectures, each data set was



linearly normalised so that the values all reside
within the range [0, 1].
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Figure 2: Extract of water flow data for holiday and
workday (see text).

5.3 Off-line Training, Prediction and Rule
Extraction with FuNNs

A fuzzy neural network FuNN was created within
the FuzzyCOPE/3 environment. It consisted of
four inputs, one for each input variable described
above in 5.2. The first input had four MF attached
(representing early morning, morning, afternoon
and evening). The second and third inputs each
had three MF attached (representing low, medium
and high water flow). The final input had two MF
attached (either a holiday, or not). Ten rule nodes
were used, and the single output had three MF
(again representing low, medium and high water
flow).

This network was trained for 10,000 epochs using
the backpropagation algorithm, and the results
were recalled with the test data. The results of the
recall are presented in Fig.3, where the actual
(solid line) and predicted (dotted line) water flow
are plotted.

After recall, a set of fuzzy rules was extracted.
These rules seem to explain well the relationship
between the input variables and the expected
water flow. A set of example rules is presented
below.

If <Time is EarlyMorning 4.63992> and
<Flow_T-2 is Low 1.63653> and <Holiday is Is
1.77835>, then <Flow is Medium 3.81119>

If <Time is Morning 13.5842> and <Flow_T-1 is
High 13.8779> and <Flow_T-2 is Low
5.44741>, then <Flow is Medium 1.86714>

If <Time is Afternoon 19.1327> and <Flow_T-1
is Low 24.77> and <Flow_T-2 is Medium
7.791> and <Holiday is IsNot 5.04419>, then
<Flow is Medium 1.58037>

If <Time is Evening 6.96259> and <Flow_T-1 is
High 7.72363> and <Flow_T-2 is Medium
3.65387>, then <Flow is Medium 0.955361>
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Figure 3: Plot of actual and predicted water flow for
the trained FuNN.

5.4 On-line Prediction with EFuNNs

An evolving fuzzy neural network, EFuNN was
first created with the same number of inputs and
outputs (and input and output MFs). Because
EFuNNs add rule nodes as required, the rule layer
initially consisted of one node.

This network was then trained in an on-line
mode, so that after the first data input vector had
been presented, the network was next tested to
predict the new hourly flow value. Finally, when
the actual flow value became known, the input –
output association was added to the EFuNN
through a one-epoch adaptive training. Then the
cycle repeats and the EFuNN was used to predict
the next new value, etc. After the presentation of
the first 75 examples two new inputs were added
to the EFuNN without re-training the whole
system, these were the moving average 12 hours
and the moving average 24 hours of the flow
data.  The EFuNN continued to grow. When the
number of nodes reached 70 the EFuNN then



started pruning the nodes as explained in [12-14].
A fuzzy rule for pruning was used based on the
total activation of the rule nodes and the "age"
(the time from creation). Fig. 4 presents the actual
water flow (solid line) and the predicted (dotted
line) on-line mode water flow.

Figure 4. Plot of actual and predicted water flow for
trained EFuNN.

Figure 4: The actual and the predicted EFuNN on-line
mode water flow.

It is clear that at the beginning the EFuNN could
not predict well, not having any training or a
priori knowledge. The more it was trained on the
incoming data the better the prediction became.

EFuNN simulators are written in MATLAB and
C++ and are part of the NZ-RICBIS – the New
Zealand Repository for Intelligent Connectionist-
based Information Systems. This is available at
http:divcom.otago.ac.nz/infosci/kel/CBIIS.html

The water flow data is available from
http://kel.otago.ac.nz/software.

5.5 Comparative Analysis of the Different
Fusion Techniques for the Water Flow
Prediction Problem

Both the FuNN and EFuNN were able to
approximate the data to a reasonable degree of
accuracy. However, while the FuNN required
10,000 training epochs (taking approximately 20
minutes on a 233-Mhz Pentium II), the EFuNN
required only one pass through the training data,
taking less than 20 seconds. It is this rapid
training capability that is one of the major
advantages of EFuNNs. Rules from an EFuNN
can also be extracted and inserted [12-14].

6. Case Study II - On-line Robot Control

6.1 The Problem

In a New Zealand meat-works, a sheep is valued
for both its pelt and meat products. Lamb meat is
an important export product and the fluffy
sheepskins make great souvenirs for our tourist
visitors.

In order to remove the carcass pelt without
damage to itself or the flesh underneath, extreme
care is required in the initial cutting operation of
the skin. For the purpose of this example, a new
robot cutting path planner approach has been
investigated. At present an algorithmic path
planning robotics system has been developed and
is being trialed in a New Zealand meat-works, so
far showing great potential over the traditional
manual butchering preparation. However, this
current approach is somewhat limited by the
rather restricted algorithmic method of the semi-
automated implementation developed.

We have started to explore use of the FuNN tool
from FuzzyCOPE/3 to first develop a model of
this current algorithmic planner. Then later, if the
model demonstrates success, we propose to
pursue and utilise the on-line adaptation
properties of the EFuNN to continue learning to
compensate for the highly variable sizes and
shapes of this natural product (sheep). The
present the algorithmic method allows for some
on-line modification to the cutting path planning,
when sheep variations demand it, but only by
manual operator intervention through the
adjustment of certain parameters which effect the
two cut intersection point in the Y-Z plane.

6.2 Experimental Data Sets

The carcass de-pelting process starts with what is
termed as a “Y-cut” , performed on the sheep
carcass while hanging upside down on a moving
conveyor chain, Fig. 5. This skin Y-cut, really
two separate cuts, begins with one front leg at the
hoof and follows down that leg and across the
lower neck/chest region of the carcass (also
known as the brisket), terminating just past the
midline of the body. A second cut is then carried
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out following a similar path, but mirroring the
first cut, beginning at the hoof of the second front
leg, continuing down it to finish just past the
point of intersection with the first cut. When the
completed Y- cut is performed correctly, the pelt
can be pulled off the carcass as a whole piece and
with minimal damage.

Figure 5: An example of the carcass Y-cut path.

For this second time-series study, the sheep
carcass Y-cut sensor data was used, together with
the algorithm path data, for training with a fixed
parameter setting. Three sensors provide three-
dimensional measurements of important points on
the carcass so that the robotic skin cutting
operation can be planned. These measurements
are:  the separation between the two front hooves;
the highest point on the brisket; and finally the
horizontal offset between the brisket and the
trachea region of the neck. At present, the ad hoc
algorithmic intersection point for the two cuts is
determined by manual parameter settings. In a
future development of an EFuNN multi-sensor
data model to determine corrections to the
algorithm calculations, we aim to fully automate
this the path prediction despite the sheep
variations by using the on-line learning and
adaptation mode of the EFuNN.

Because the carcass is hung from an overhead
conveyor line from its hooves the starting points
are easily identified and provide the [0, 0, 0]
reference in space for the cut. However, the
meeting point of the cuts and their paths down the
front legs of the carcass in space are very much

dependent on the size and breed of the animal.
Also, because the carcass is continually moving
along the conveyor line, the cut intersection point
needs to be accurately determined and tracked,
although cutting is assisted by design of the hook
shaped knife. The shape pulls the skin away from
the flesh and helps ensure the knife just cuts
through it.

6.3 Preliminary Results - Training Path
Planning with FuNN

An off-line fuzzy neural network cutting path
planning model is being developed using FuNN
to predict the next knife position for time, t. The
input consists of 12 nodes, each having five
membership functions (MFs) for fuzzification.
The first three inputs are the X, Y, and Z carcass
sensor measurements made on each sheep as
described above. The next three inputs are the x,
y, and z coordinates of the last (t-1) knife
position. The final two sets of three inputs are the
time lagged (t-2) and (t-3) coordinate positions.
Three output nodes [xo, yo, zo] with 7 MFs each
generate the 3-D predicted cutting path sequence.

Data for the Y-cuts, taken from 83 sheep were
used for this preliminary investigation - 50 for
training and 33 for testing. The curent algorithm
generated the time-series sequence of 100 cutting
path positions, each sheep, which control the
robot arm manipulation of the cutting knife. A
limited range of animals sizes and shapes were
included. Each carcass cutting path data set of
100 vectors contained the 12 input data values
(X, Y, Z measurements followed by the three
time lags of the previous knife positions), and
then the next [xo, yo, zo] predicted position for the
knife, to be learnt.

The best results obtained so far have been with a
15 node rule layer and after only 100 training
epochs. Further experimentation is obviously
required to refine the model. Figures 6 and 7
display typical results of a single cut for one
sheep, x versus y and z versus y respectively,
with the actual (solid line) and the FuNN
predicted (dotted line) cut paths superimposed.
The average RMS differences are 4.6, 11.8 and



8.5 (mm) for the x, y, and z directions
respectively for 50 carcasses.

Figure 6: Typical x-y cutting path (mm) from FuNN.

Figure 7: Resultant z-y cutting path (mm) for Fig. 6.

7. Discussion and Conclusions

Connectionist-based algorithms are robust when
the appropriate techniques are used. They allow
the analyst to learn relationships between the
input and output variables without making
assumptions about the data distribution. Thus,
improving the prediction or classification
accuracy is based on updating the transfer
function and not manipulating the incoming data
flow. Also the fuzzified connectionist-based
algorithms may now require fewer training
examples than traditional sensor data fusion
methods. The results of ANNs and FuNNs, over
fuzzy rules and more traditional statistical
methods can be shown to have a distinct
advantage [8]. For example, the adaptive learning
algorithms enable the EFuNNs to learn
relationships between input data and output data
in an iterative way [12-14] and on-line. Finally,
fuzzy rules may then be extracted and updated

from all the classes of FuNN to help explain what
the network has learned.

When using FuNNs and EFuNNs one should
always refer to traditional statistical methods and
compare the results with them, if possible.
However, there exist disadvantages in applying
statistical algorithms to determine the input-
output transfer function characteristics. First, this
approach requires large amounts of sample data
for processing. Second, it is not capable of
handling conflicting information that can arise in
the transfer function it is trying to model and this
cannot be updated without changing the input
data - there is no feedback process for statistical
algorithms to learn from a posteriori knowledge.
For example, they do not cope well where the
data distribution is bimodal or very non-normal,
which are the case here. Also, the sensitivity for
the separation between output states is a function
of all the inputs, so closely positioned states are
not well distinguished. However, statistical
methods can suit some models where the data is
uni-modal and normal. Then this approach has
the advantages of being computationally efficient
and capable of producing highly accurate results.

In the first study, two of the hybrid neuro-fuzzy
modules of FuzzyCOPE/3, FuNNs and EFuNNs
have been demonstrated and in the second case
study a preliminary FuNN application looks
promising. Work on this robotic path planning
problem is to continue and it is expected that a
fully automated solution can be developed. While
the modules performed acceptably in both cases,
it is expected that recurrent versions of these
networks, scheduled to be included in the next
version of FuzzyCOPE, will yield even better
results.

The objective of this paper has been to promote
awareness of this new and versatile data fusion,
FuzzyCOPE/3 environment, and to entice others
to investigate and apply it to new real world
problems. The results presented here, hopefully
demonstrate the potential of this fusion
environment for providing solutions to previously
difficult to solve problems.
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